Skip to main content Accessibility help
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-24T20:14:45.528Z Has data issue: false hasContentIssue false

2 - Emergence and the experimental pursuit of the origin of life

from Part I - Origin of life

Published online by Cambridge University Press:  29 December 2010

Constance M. Bertka
AAAS, Washington
Get access


The origin of life involved many, many emergences.

Harold Morowitz

The experimental investigation of life's origin commenced in earnest more than a half-century ago with the pioneering work of Miller, who synthesized many of life's molecular building blocks under plausible prebiotic conditions. Despite an initial euphoric sense that the origin mystery would soon be solved, scientists quickly realized that the transition from a geochemical to a biochemical world would not easily be deduced by the scientific method.

The great challenge of origins research lies in replicating in a laboratory setting the extraordinary increase in complexity that is required to evolve from isolated molecules to a living cell. The principal objective of this review is to describe some of the efforts by origin-of-life researchers to induce such increases in complexity. A unifying theme of these studies, and hence a useful organizing framework for this review, is the principle of emergence – the natural process by which complexity arises.

Emergence as a unifying concept in origins research

The origin of life may be modeled as a sequence of so-called “emergent” events, each of which added new structure and chemical complexity to the prebiotic Earth. Observations of numerous everyday phenomena reveal that new patterns commonly emerge when energy flows through a collection of many interacting particles.

Exploring the Origin, Extent, and Future of Life
Philosophical, Ethical and Theological Perspectives
, pp. 21 - 46
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Morowitz, H. J.. The Emergence of Everything (New York: Oxford University Press, 2002).Google Scholar
Miller, S. L.. Production of amino acids under possible primitive earth conditions. Science, 17 (1953), 528–529.CrossRefGoogle Scholar
Prigogine, I.. Order out of Chaos: Man's New Dialogue with Nature (Toronto: Bantam Books, 1984).Google Scholar
Nicolis, G. and Prigogine, I.. Exploring Complexity: An Introduction (New York: W. H. Freeman and Company, 1989).Google Scholar
Holland, J. H.. Hidden Order (Reading, MA: Helix Books, 1995).Google Scholar
Holland, J. H.. Emergence: From Chaos to Order (Reading, MA: Helix Books, 1998).Google Scholar
Hazen, R. M.. Genesis: The Scientific Quest for Life's Origin (Washington, DC: Joseph Henry Press, 2005).Google Scholar
Bagnold, R. A.. The Physics of Blown Sand and Desert Dunes (London: Chapman and Hall, 1941).Google Scholar
Bagnold, R. A.. The Physics of Sediment Transport by Wind and Water (New York: American Society of Civil Engineers, 1988).Google Scholar
Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., and Bonabeau, E.. Self-Organization in Biological Systems (Princeton, NJ: Princeton University Press, 2001).Google Scholar
Solé, R. and Goodwin, B.. Signs of Life: How Complexity Pervades Biology (New York: Basic Books, 2000).Google Scholar
Chaisson, E. J.. Cosmic Evolution: The Rise of Complexity in Nature (Cambridge, MA: Harvard University Press, 2001).Google Scholar
Kessler, M. A. and Werner, B. T.. Self-organization of sorted patterned ground. Science, 299 (2003), 380–383.CrossRefGoogle ScholarPubMed
Hansen, J. L., Hecke, M., Haaning, A., et al. Instabilities in sand ripples. Nature, 410 (2001), 324.CrossRefGoogle ScholarPubMed
Duve, C.. Vital Dust: Life as a Cosmic Imperative (New York: Basic Books, 1995).Google Scholar
Cleland, C. and Chyba, C.. Defining life. Origins of Life and Evolution of the Biosphere, 32 (2002), 387–393.CrossRefGoogle Scholar
Hazen, R. M., Steele, A., Toporski, J., Cody, G. D., Fogel, M., and Huntress, W. T. Jr. Biosignatures and abiosignatures. Astrobiology, 2 (2002), 512–513.Google Scholar
Miller, S. L.. Production of some organic compounds under possible primitive earth conditions. Journal of the American Chemical Society, 77 (1955), 2351–2361.CrossRefGoogle Scholar
Miller, S. L. and Urey, H. C.. Organic compound synthesis on the primitive Earth. Science, 130 (1959), 245–251.CrossRefGoogle ScholarPubMed
Dick, S. J. and Strick, J. E.. The Living Universe: NASA and the Development of Astrobiology (New Brunswick, NJ: Rutgers University Press, 2004).Google Scholar
Fry, I.. The Emergence of Life on Earth: A Historical and Scientific Overview (New Brunswick, NJ: Rutgers University Press, 2000), pp. 318–320.Google Scholar
Strick, J. E.. Sparks of Life: Darwinism and the Victorian Debate over Spontaneous Generation (Cambridge, MA: Harvard University Press, 2000).Google Scholar
Oparin, A. I.. Proiskhozhdenie Zhizny (in Russian) (Moscow: Rabochii, 1924). (An English translation appears in: J. D. Bernal. The Origin of Life (London: Weidenfeld and Nicolson, 1967).)Google Scholar
Haldane, J. B. S.. The origin of life. The Rationalist Annual (1929), 3–10.Google Scholar
Wills, C. and Bada, J. L.. The Spark of Life: Darwin and the Primeval Soup (Cambridge, MA: Perseus, 2000).Google Scholar
Oró, J.. Synthesis of adenine from ammonium cyanide. Biochemical and Biophysical Communications, 2 (1960), 407–412.CrossRefGoogle Scholar
Oró, J.. Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature, 191 (1961), 1193–1194.CrossRefGoogle ScholarPubMed
Shapiro, R.. Prebiotic ribose synthesis: a critical analysis. Origins of Life and Evolution of the Biosphere, 18 (1988), 71–85.CrossRefGoogle ScholarPubMed
Chyba, C. F. and Sagan, C.. Endogenous production, exogenous delivery, and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature, 355 (1992), 125–132.CrossRefGoogle ScholarPubMed
Kasting, J. F. and Siefert, J. L.. Life and the evolution of Earth's atmosphere. Science, 296 (2002), 1066–1068.CrossRefGoogle ScholarPubMed
Kasting, J. F.. Methane-rich proterozoic atmosphere?Geology, 31 (2003), 87–90.Google Scholar
Tian, F., Toon, O. B., Pavlov, A. A., and Sterck, H.. A hydrogen-rich early Earth atmosphere. Science, 308 (2005), 1014–1016.CrossRefGoogle ScholarPubMed
Chyba, C.. Rethinking Earth's early atmosphere. Science, 308 (2005), 962–963.CrossRefGoogle ScholarPubMed
Corliss, J. B., Dymond, J., Gordon, L. I., et al. Submarine thermal springs on the Galapagos rift. Science, 203 (1979), 1073–1083.CrossRefGoogle ScholarPubMed
Corliss, J. B.. Baross, J. A., and Hoffman, S. E.. An hypothesis concerning the relationship between submarine hot springs and the origin of life on earth. In Proceedings of the 26th International Geological Congress, Geology of the Oceans Symposium, eds. Pichon, X., Debyser, J., and Vine, F. (Paris 1980, X. Oceanologica Acta, 4 (supplement) 1981), pp. 59–69.Google Scholar
Baross, J. A. and Hoffman, S. E.. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life and Evolution of the Biosphere, 15 (1985), 327–345.CrossRefGoogle Scholar
Holm, N. G.. Why are hydrothermal systems proposed as plausible environments for the origin of life?Origins of Life and Evolution of the Biosphere, 22 (1992), 5–14.CrossRefGoogle Scholar
Gold, T.. The Deep Hot Biosphere (New York: Copernicus, 1999).CrossRefGoogle Scholar
Parkes, R. J., Craig, B. A., Bale, S. J., et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371 (1993), 410–413.CrossRefGoogle Scholar
Stevens, T. O. and McKinley, J. P.. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science, 270 (1995), 450–454.CrossRefGoogle Scholar
Frederickson, J. K. and Onstott, T. C.. Microbes deep inside the Earth. Scientific American, 275(4) (1996), 68–73.CrossRefGoogle Scholar
Pedersen, K.. The deep subterranean biosphere. Earth-Science Reviews, 34 (1993), 243–260.CrossRefGoogle Scholar
Madigan, M. T. and Marrs, B. L.. Extremophiles. Scientific American, 276(4) (1997), 82–87.CrossRefGoogle ScholarPubMed
Wächtershäuser, G.. Before enzymes and templates: theory of surface metabolism. Microbiology Review, 52 (1988), 452–484.Google ScholarPubMed
Wächtershäuser, G.. Pyrite formation, the first energy source for life: a hypothesis. Systematic Applied Microbiology, 10 (1988), 207–210.CrossRefGoogle Scholar
Wächtershäuser, G.. The case for the chemoautotrophic origin of life in an iron-sulfur world. Origins of Life and Evolution of the Biosphere, 20 (1990), 173–176.CrossRefGoogle Scholar
Wächtershäuser, G.. Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences USA, 87 (1990), 200–204.CrossRefGoogle ScholarPubMed
Wächtershäuser, G.. Groundworks for an evolutionary biochemistry: the iron-sulfur world. Progress in Biophysics and Molecular Biology, 58 (1992), 85–201.CrossRefGoogle Scholar
Beinert, H., Holm, R. H. and Münck, E.. Iron-sulfur clusters: nature's modular, multipurpose structures. Science, 277 (1997), 653–659.CrossRefGoogle ScholarPubMed
Blöchl, E., Keller, M., Wächtershäuser, G., and Stetter, K. O.. Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proceedings of the National Academy of Sciences USA, 89 (1992), 8117–8120.CrossRefGoogle ScholarPubMed
Heinen, W. and Lauwers, A. M.. Organic sulfur compounds resulting from interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an aerobic aqueous environment. Origins of Life and Evolution of the Biosphere, 26 (1996), 131–150.CrossRefGoogle Scholar
Huber, C. and Wächtershäuser, G.. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science, 276 (1997), 245–247.CrossRefGoogle ScholarPubMed
Huber, C. and Wächtershäuser, G.. Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. Science, 281 (1998), 670–672.CrossRefGoogle ScholarPubMed
Cody, G. D., Boctor, N. Z., Filley, T. R., et al. Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science, 289 (2000), 1337–1340.CrossRefGoogle ScholarPubMed
Cody, G. D., Boctor, N. Z., Hazen, R. M., Brandes, J. A., Morowitz, H. J., and Yoder, H. S., Jr. Geochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid-H2O-(±FeS)-(±NiS). Geochimica et Cosmochimica Acta, 65 (2001), 3557–3576.CrossRefGoogle Scholar
Cody, G. D., Boctor, N. Z., Brandes, J. A., Filley, T. R., Hazen, R. M., and Yoder, H. S., Jr. Assaying the catalytic potential of transition metal sulfides for prebiotic carbon fixation. Geochimica et Cosmochimica Acta, 68 (2004), 2185–2196.CrossRefGoogle Scholar
Bada, J. L. and Lazcano, A.. Some like it hot, but not the first biomolecules. Science, 296 (2002), 1982–1983.CrossRefGoogle Scholar
Bada, J. L., Miller, S. L., and Zhao, M.. The stability of amino acids at submarine hydrothermal vent temperatures. Origins of Life and Evolution of the Biosphere, 25 (1995), 111–118.CrossRefGoogle ScholarPubMed
Nelson, D. L. and Cox, M. M.. Lehninger's Principles of Biochemistry, 4th edn. (New York: Worth Publishers, 2004).Google Scholar
Luisi, P. L. and Varela, F. J.. Self-replicating micelles: a chemical version of a minimal autopoietic system. Origins of Life and Evolution of the Biosphere, 19 (1989), 633–643.CrossRefGoogle Scholar
Deamer, D. W.. The first living systems: a bioenergetic perspective. Microbiology and Molecular Biology Review, 61 (1997), 239–261.Google ScholarPubMed
Segré, S., Deamer, D. W., and Lancet, D.. The lipid world. Origins of Life and Evolution of the Biosphere, 31 (2001), 119–145.CrossRefGoogle ScholarPubMed
Lasaga, A. C., Holland, H. D., and Dwyer, M. J.. Primordial oil slick. Science, 174 (1971), 53–55.CrossRefGoogle ScholarPubMed
Lahav, N., White, D., and Chang, S.. Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science, 201 (1978), 67–69.CrossRefGoogle ScholarPubMed
Orgel, L. E.. Polymerization on the rocks: theoretical introduction. Origins of Life and Evolution of the Biosphere, 28 (1998), 227–234.CrossRefGoogle ScholarPubMed
Smith, J. V.. Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars. Proceedings of the National Academy of Sciences USA, 95 (1998), 3370–3375.CrossRefGoogle ScholarPubMed
Ferris, J. P.. Catalysis and prebiotic synthesis. Origins of Life and Evolution of the Biosphere, 23 (1993), 307–315.CrossRefGoogle Scholar
Ferris, J. P.. Prebiotic synthesis on minerals: bridging the prebiotic and RNA worlds. Biology Bulletin, 196 (1999), 311–314.CrossRefGoogle ScholarPubMed
Ferris, J. P.. Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements, 1 (2005), 145–149.CrossRefGoogle Scholar
Pitsch, S., Eschenmoser, A., Gedulin, B., Hui, S., and Arrhenius, G.. Mineral induced formation of sugar phosphates. Origins of Life and Evolution of the Biosphere, 25 (1995), 297–334.CrossRefGoogle ScholarPubMed
Cairns-Smith, A. G.. The origin of life and the nature of the primitive gene. Journal of Theoretical Biology, 10 (1968), 53–88.CrossRefGoogle Scholar
Cairns-Smith, A. G.. Genetic Takeover and the Mineral Origins of Life (Cambridge: Cambridge University Press, 1982).Google Scholar
Cairns-Smith, A. G.. The first organisms. Scientific American, 252(6) (1985), 90–100.CrossRefGoogle Scholar
Cairns-Smith, A. G.. Seven Clues to the Origin of Life (Cambridge: Cambridge University Press, 1985).Google Scholar
Bonner, W. A.. The origin and amplification of biomolecular chirality. Origins of Life and Evolution of the Biosphere, 21 (1991), 59–111.CrossRefGoogle ScholarPubMed
Bonner, W. A.. Chirality and life. Origins of Life and Evolution of the Biosphere, 25 (1995), 175–190.CrossRefGoogle ScholarPubMed
Hazen, R. M. and Sholl, D. S.. Chiral selection on inorganic crystalline surfaces. Nature Materials, 2 (2003), 367–374.CrossRefGoogle ScholarPubMed
Cronin, J. R. and Pizzarello, S.. Amino acids in meteorites. Advances in Space Research, 3 (1983), 5–18.CrossRefGoogle ScholarPubMed
Engel, M. H. and Macko, S. A.. Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature, 296 (1997), 837–840.CrossRefGoogle Scholar
Pizzarello, S. and Cronin, J. R.. Non-racemic amino acids in the Murray and Murchison meteorites. Geochimica et Cosmochimica Acta, 64 (2000), 329–338.CrossRefGoogle ScholarPubMed
Clark, S.. Polarized starlight and the handedness of life. American Scientist, 87 (1999), 336–343.CrossRefGoogle Scholar
Bailey, J., Chrysostomou, A., Hough, J. H., et al. Circular polarization in star-formation regions: implications for biomolecular homochirality. Science, 281 (1998), 672–674.CrossRefGoogle ScholarPubMed
Podlech, J.. New insight into the source of biomolecular homochirality: an extraterrestrial origin for molecules of life. Angewandt Chemie International Edition English, 38 (1999), 477–478.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Hazen, R. M.. Chiral crystal faces of common rock-forming minerals. In Progress in Biological Chirality, eds. Palyi, G., Zucchi, C. and Caglioti, L. (Oxford: Elsevier, 2004), pp. 137–151.Google Scholar
Hazen, R. M.. Mineral surfaces and the prebiotic selection and organization of biomolecules. American Mineralogist, 91 (2006), 1715–1729.CrossRefGoogle Scholar
Hazen, R. M., Filley, T., and Goodfriend, G. A.. Selective adsorption of L- and D-amino acids on calcite: implications for biochemical homochirality. Proceedings of the National Academy of Sciences, USA, 98 (2001), 5487–5490.CrossRefGoogle ScholarPubMed
Duve, C.. The beginnings of life on Earth. American Scientist, 83 (1995), 428–437.Google Scholar
Dyson, F.. Origins of Life (Cambridge: Cambridge University Press, 1999).CrossRefGoogle Scholar
Fox, S. W.. A theory of macromolecular and cellular origins. Nature, 205 (1965), 328–340.CrossRefGoogle ScholarPubMed
Fox, S. W.. The Emergence of Life: Darwinian Evolution from the Inside (New York: Basic Books, 1988).Google Scholar
Orgel, L. E.. RNA catalysis and the origin of life. Journal of Theoretical Biology, 123 (1986), 127–149.CrossRefGoogle Scholar
Morowitz, H. J.. The Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis (New Haven, CT: Yale University Press, 1992).Google Scholar
Wilson, E. K.. Go forth and multiply. Chemical and Engineering News, 76 (December 7, 1998), 40–44.Google Scholar
Kiedrowski, G.. A self-replicating hexadeoxynucleotide. Angewandt Chemie International Edition English, 25 (1986), 932–935.CrossRefGoogle Scholar
Sievers, D. and Kiedrowski, G.. A self-replication of complementary nucleotide-based oligomers. Nature, 369 (1994), 221–224.CrossRefGoogle ScholarPubMed
Jr, J. Rebek. Synthetic self-replicating molecules. Scientific American, 271(1) (1994), 48–55.Google Scholar
Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K., and Ghadiri, M. R.. A self-replicating peptide. Nature, 382 (1996), 525–528.CrossRefGoogle ScholarPubMed
Yao, S., Ghosh, I., Zutshi, R., and Chmielewski, J.. A pH-modulated, self-replicating peptide. Journal of the American Chemical Society, 119 (1997), 10559–10560.CrossRefGoogle Scholar
Eigen, M. and Schuster, P.. The Hypercycle: A Principle of Natural Self-Organization (Berlin: Springer-Verlag, 1979).CrossRefGoogle Scholar
Kauffman, S. A.. The Origins of Order: Self-Organization and Selection in Evolution (New York: Oxford University Press, 1993).Google Scholar
Huber, C., Eisenreich, W., Hecht, S., and Wächtershäuser, G.. A possible primordial peptide cycle. Science, 301 (2003), 938–940.CrossRefGoogle ScholarPubMed
Russell, M. J. and Hall, A. J.. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society of London, 154 (1997), 377–402.CrossRefGoogle Scholar
Russell, M. J. and Hall, A. J.. From geochemistry to biochemistry: chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. The Geochemical News, 113 (2002), 6–12.Google Scholar
Woese, C. R.. The Genetic Code (New York: Harper & Row, 1967).Google Scholar
Crick, F. H. C.. The origin of the genetic code. Journal of Molecular Biology, 38 (1968), 367–379.CrossRefGoogle ScholarPubMed
Orgel, L. E.. Evolution of the genetic apparatus. Journal of Molecular Biology, 38 (1968), 381–393.CrossRefGoogle ScholarPubMed
Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R.. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31 (1982), 147–157.CrossRefGoogle ScholarPubMed
Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S.. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35 (1983), 849–857.CrossRefGoogle ScholarPubMed
Zaug, A. J. and Cech, T. R.. The intervening sequence RNA of Tetrahymena is an enzyme. Science, 231 (1986), 470–475.CrossRefGoogle ScholarPubMed
Joyce, G. F.. RNA evolution and the origins of life. Nature, 338 (1989), 217–224.CrossRefGoogle ScholarPubMed
Joyce, G. F.. The rise and fall of the RNA world. New Biology, 3 (1991), 399–407.Google ScholarPubMed
Joyce, G. F. and Orgel, L. E.. Prospects for understanding the RNA world. In The RNA World, eds. Gesteland, R. F. and Atkins, J. F. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1993), pp. 1–25.Google Scholar
Orgel, L. E.. Some consequences of the RNA world hypothesis. Origins of Life and Evolution of the Biosphere, 33 (2003), 211–218.CrossRefGoogle ScholarPubMed
Eschenmoser, A.. Chemical etiology of nucleic acid structure. Science, 284 (1999), 2118–2124.CrossRefGoogle ScholarPubMed
Eschenmoser, A.. The TNA-family of nucleic acid systems: properties and prospects. Origins of Life and Evolution of the Biosphere, 34 (2004), 277–306.CrossRefGoogle ScholarPubMed
Nielsen, P. E.. Peptide nucleic acid (PNA): a model structure for the primordial genetic material?Origins of Life and Evolution of the Biosphere, 23 (1993), 323–327.CrossRefGoogle ScholarPubMed
Szostak, J. W., Bartel, D. P. and Luisi, P. L.. Synthesizing life. Nature, 409 (2001), 387–390.CrossRefGoogle ScholarPubMed
Joyce, G. F.. Directed molecular evolution. Scientific American, 267(6) (1992), 90–97.CrossRefGoogle ScholarPubMed
Doudna, J. A. and Szostak, J. W.. RNA catalyzed synthesis of complementary strand RNA. Nature, 339 (1998), 519–522.CrossRefGoogle Scholar
Green, R. and Szostak, J. W.. Selection of a ribozyme that functions as a superior template in a self-copying reaction. Science, 258 (1992), 1910–1915.CrossRefGoogle Scholar
Bartel, D. P. and Szostak, J. W.. Isolation of new ribozymes from a large pool of random sequences. Science, 261 (1993), 1411–1418.CrossRefGoogle ScholarPubMed
Szostak, J. W. and Ellington, A. D.. In vitro selection of functional RNA sequences. In The RNA World, eds. Gesteland, R. F. and Atkins, J. F. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1993), pp. 511–533.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats