Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T18:34:27.143Z Has data issue: false hasContentIssue false

5 - Fern adaptations to xeric environments

Published online by Cambridge University Press:  05 June 2012

Peter Hietz
Affiliation:
University of Natural Resources and Applied Life Sciences (BOKU)
Klaus Mehltreter
Affiliation:
Instituto de Ecologia, A.C., Xalapa, Mexico
Lawrence R. Walker
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Key points

  1. 1. Ferns are most prominent in shady and humid environments, but many species are also found in drought-prone habitats, either (semi) arid ecosystems or locations with discontinuous water supply within otherwise humid ecosystems. These locations include tree branches and rocks, both substrates with little water storage capacity.

  2. 2. Drought tolerance is gained through adaptations in water uptake, water loss, water storage and, in many ferns, desiccation tolerance, a feature that ferns share with other cryptogams. The little information available on the cuticle's efficiency to limit water loss suggests that it may be similar to other vascular plants. Thus many xerophytic ferns, while tolerating desiccation, normally avoid it through low cuticular and stomatal water loss and may not be considered truly poikilohydric. Exceptions are filmy ferns with very little control of water loss and whose water relations are akin to mosses rather than vascular plants.

  3. 3. Other adaptations found in xerophytic ferns include photoprotection with pigments, antioxidants, dense indument, leaf curling and drought avoidance by shedding leaves in the dry season. Crassulacean acid metabolism (CAM) is a common adaptation of xerophytic angiosperms, but is very rare in ferns. Succulence is not strongly developed in xerophytic ferns.

  4. 4. Drought adaptations of ferns are analyzed in light of their phylogenetic positions and compared with those of angiosperms. This chapter discusses the potentially underlying causes of drought tolerance in ferns and points to gaps in our understanding as well as possible future research.

Type
Chapter
Information
Fern Ecology , pp. 140 - 176
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, P. (2000). The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecology, 151, 5–17.CrossRefGoogle Scholar
Altesor, A., Ezcurra, E. and Silva, C. (1992). Changes in the photosynthetic metabolism during the early ontogeny of four cactus species. Acta Oecologica, 13, 777–85.Google Scholar
Beckett, R. P. (1997). Pressure–volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Annals of Botany, 79, 145–52.CrossRefGoogle Scholar
Benzing, D. H. (1990). Vascular Epiphytes: General Biology and Related Biota. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Brodribb, T. J. and Feild, T. S. (2000). Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell and Environment, 23, 1381–8.CrossRefGoogle Scholar
Brodribb, T. J. and Holbrook, N. M. (2004). Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist, 162, 663–70.CrossRefGoogle Scholar
Brodribb, T. J., Holbrook, N. M., Edwards, E. J. and Gutiérrez, M. V. (2003). Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell and Environment, 26, 443–50.CrossRefGoogle Scholar
Brodribb, T. J., Holbrook, N. M., Zwieniecki, M. A. and Palma, B. (2005). Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytologist, 165, 839–46.CrossRefGoogle ScholarPubMed
Cardelús, C. L., Colwell, R. K. and Watkins, J. E., Jr. (2006). Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. Journal of Ecology, 94, 144–56.CrossRefGoogle Scholar
Carlquist, S. and Schneider, E. L. (2001). Vessels in ferns: structural, ecological, and evolutionary significance. American Journal of Botany, 88, 1–13.CrossRefGoogle ScholarPubMed
Carlquist, S. and Schneider, E. L. (2007). Tracheary elements in ferns: new techniques, observations, and concepts. American Fern Journal, 97, 199–211.CrossRefGoogle Scholar
Carter, J. P. and Martin, C. E. (1994). The occurrence of crassulacean acid metabolism among epiphytes in a high rainfall region of Costa Rica. Selbyana, 15, 104–6.Google Scholar
Casper, C., Eickmeier, W. and Osmond, C. (1993). Changes of fluorescence and xanthophyll pigments during dehydration in the resurrection plant Selaginella lepidophylla in low and medium light intensities. Oecologia, 94, 528–33.CrossRefGoogle Scholar
Demmig-Adams, B. and Adams, W. W., III. (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology, 43, 599–626.CrossRefGoogle Scholar
Demmig-Adams, B. and Adams, W. W., III. (1994). Light stress and photoprotection related to the xanthophyll cycle. In Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, ed. Foyer, C. H. and Mullineaux, P. M.. Boca Raton, FL, USA: CRC Press, pp. 105–26.Google Scholar
Earnshaw, M. J., Winter, K., Ziegler, H., et al. (1987). Altitudinal changes in the incidence of crassulacean acid metabolism in vascular epiphytes and related life forms in Papua New Guinea. Oecologia, 73, 566–72.CrossRefGoogle ScholarPubMed
Eickmeier, W. G. (1986). The correlation between high-temperature and desiccation tolerances in a poikilohydric desert plant. Canadian Journal of Botany, 64, 611–17.CrossRefGoogle Scholar
Eickmeier, W. G., Casper, C. and Osmond, B. (1993). Chlorophyll fluorescence in the resurrection plant Selaginella lepidophylla (Hook. & Grev.) Spring during high-light and desiccation stress, and evidence for zeaxanthin-associated photoprotection. Planta, 189, 30–8.CrossRefGoogle Scholar
Esau, K. (1965). Plant Anatomy, 2nd edn. New York: John Wiley.Google Scholar
Gaff, D. F. (1987). Desiccation tolerant plants in South America. Oecologia, 74, 133–6.CrossRefGoogle ScholarPubMed
Gildner, B. S. and Larson, D. W. (1992). Photosynthetic response to sunflecks in the desiccation-tolerant fern Polypodium virginianum. Oecologia, 89, 390–6.CrossRefGoogle ScholarPubMed
Gordon, C., Woodin, S. J., Alexander, I. J. and Mullins, C. E. (1999a). Effects of increased temperature, drought and nitrogen supply on two upland perennials of contrasting functional type: Calluna vulgaris and Pteridium aquilinum. New Phytologist, 142, 243–58.CrossRefGoogle Scholar
Gordon, C., Woodin, S. J., Mullins, C. E. and Alexander, I. J. (1999b). Effects of environmental change, including drought, on water use by competing Calluna vulgaris (heather) and Pteridium aquilinum (bracken). Functional Ecology, 13, 96–106.CrossRefGoogle Scholar
Griffiths, H. (1989). Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In Vascular Plants as Epiphytes: Evolution and Ecophysiology, ed. Lüttge, U.. Heidelberg, Germany: Springer-Verlag, pp. 42–86.CrossRefGoogle Scholar
Griffiths, H., Lüttge, U., Stimmel, K. H., et al. (1986). Comparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration. Plant, Cell and Environment, 9, 385–93.CrossRefGoogle Scholar
Griffiths, H., Ong, B. L., Avadhani, P. N. and Goh, C. J. (1989). Recycling of respiratory CO2 during crassulacean acid metabolism: alleviation of photoinhibition in Pyrrosia piloselloides. Planta, 179, 115–22.CrossRefGoogle ScholarPubMed
Hemp, A. (2001). Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro. II. Habitat selection. Plant Biology, 3, 493–523.CrossRefGoogle Scholar
Hemp, A. (2002). Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro. I. Altitudinal distribution. Plant Ecology, 159, 211–39.CrossRefGoogle Scholar
Hew, C. S. and Wong, Y. S. (1974). Photosynthesis and respiration of ferns in relation to their habitats. American Fern Journal, 64, 40–8.Google Scholar
Hietz, P. and Briones, O. (1998). Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia, 114, 305–16.CrossRefGoogle Scholar
Hietz, P. and Briones, O. (2001). Photosynthesis, chlorophyll fluorescence and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Plant Biology, 3, 279–87.CrossRefGoogle Scholar
Hietz, P. and Hietz-Seifert, U. (1995). Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. Journal of Vegetation Science, 6, 487–98.CrossRefGoogle Scholar
Hietz, P., Wanek, W. and Popp, M. (1999). Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant, Cell and Environment, 22, 1435–43.CrossRefGoogle Scholar
Holtum, J. A. M. and Winter, K. (1999). Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. Australian Journal of Plant Physiology, 26, 749–57.CrossRefGoogle Scholar
Hovenkamp, P. (1986). A monograph of the fern genus Pyrrosia. Leiden Botanical Series, 9, 1–80.Google Scholar
Hungerbühler, R. (1957). Die Xeromorphosen der Farne mit besonderer Berücksichtigung der Blattanatomie. Unpublished Ph.D. thesis, University of Zürich.
Jacobsen, W. B. G. (1983). The Ferns and Fern Allies of Southern Africa. Durban/Pretoria, Republic of South Africa: Butterworths.Google Scholar
Kappen, L. (1965). Untersuchungen über die Widerstandsfähigkeit der Gametophyten einheimischer Polypodiaceae gegenüber Frost, Hitze und Trockenheit. Flora, 156, 101–15.Google Scholar
Kappen, L. (1966). Der Einfluss des Wassergehaltes auf die Widerstandsfähigkeit von Pflanzen gegenüber hohen und tiefen Temperaturen, untersucht an Blättern einiger Farne und von Ramonda myconi. Flora, 156, 427–45.Google Scholar
Keeley, J. E. (1981). Isoëtes howellii: a submerged aquatic CAM plant? American Journal of Botany, 68, 420.CrossRefGoogle Scholar
Kessler, M. (2001). Pteridophyte species richness in Andean forests in Bolivia. Biodiversity and Conservation, 10, 1473–95.CrossRefGoogle Scholar
Kluge, M. and Ting, J. P. (1978). Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation. Ecological Studies 30. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Kluge, M., Avadhani, P. N. and Goh, C. J. (1989a). Gas exchange and water relations in epiphytic tropical ferns. In Vascular Plants as Epiphytes, ed. Lüttge, U.. Heidelberg, Germany: Springer-Verlag, pp. 87–108.CrossRefGoogle Scholar
Kluge, M., Friemert, V., Ong, B. L., Brulfert, J. and Goh, C. J. (1989b). In situ studies of crassulacean acid metobolism in Drymoglossum piloselloides, an epiphytic fern of the humid tropics. Journal of Experimental Botany, 40, 441–52.CrossRefGoogle Scholar
Kramer, K. U., Schneller, J. J. and Wollenweber, E. (1995). Farne und Farnverwandte. Stuttgart, Germany: Georg Thieme.Google Scholar
Larcher, W. (2002). Physiological Plant Ecology. Berlin, Germany: Springer-Verlag.Google Scholar
Lebkuecher, J. G., and Eickmeier, W. G. (1991). Reduced photoinhibition with stem curling in the resurrection plant Selaginella lepidophylla. Oecologia, 88, 597–604.CrossRefGoogle ScholarPubMed
Lebkuecher, J. G. and Eickmeier, W. G. (1993). Physiological benefits of stem curling for resurrection plants in the field. Ecology, 74, 1073–80.CrossRefGoogle Scholar
Lehnert, M. (2007). Diversity and evolution of pteridophytes, with emphasis on the neotropics. Unpublished Ph.D. thesis, University of Göttingen.
Long, S. P., Humphries, S. and Falkowski, P. G. (1994). Photoinhibition and photosynthesis in nature. Annual Review of Plant Physiology, 45, 633–62.CrossRefGoogle Scholar
Lüttge, U. (1989). Vascular Plants as Epiphytes: Evolution and Ecophysiology. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Maherali, H., Pockman, W. T. and Jackson, R. B. (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184–99.CrossRefGoogle Scholar
Marrs, R. H., and Watt, A. S. (2006). Biological flora of the British Isles: Pteridium aquilinum (L.) Kuhn. Journal of Ecology, 94, 1272–321.CrossRefGoogle Scholar
Martin, C. E., Allen, M. T. and Haufler, C. H. (1995). C3 photosynthesis in the gametophyte of the epiphytic CAM fern Pyrrosia longifolia (Polypodiaceae). American Journal of Botany, 82, 441–4.CrossRefGoogle Scholar
Martin, C. E., Lin, K. C., Hsu, C. C. and Chiou, W. L. (2004). Causes and consequences of high osmotic potentials in epiphytic higher plants. Journal of Plant Physiology, 161, 1119–24.CrossRefGoogle ScholarPubMed
Martin, S. L., Davis, R., Protti, P., et al. (2005). The occurrence of crassulacean acid metabolism in epiphytic ferns, with an emphasis on the Vittariaceae. International Journal of Plant Sciences, 166, 623–30.CrossRefGoogle Scholar
Mehltreter, K. (2008). Phenology and habitat specificity of tropical ferns. In Biology and Evolution of Ferns and Lycophytes, ed. Ranker, T. A. and Haufler, C. H.. Cambridge, UK: Cambridge University Press, pp. 201–21.CrossRefGoogle Scholar
Müller, L., Starnecker, G. and Winkler, S. (1981). Zur Ökologie epiphytischer Farne in Südbrasilien. I. Saugschuppen. Flora, 171, 55–63.CrossRefGoogle Scholar
Muslin, E. H., and Homann, P. H. (1992). Light as a hazard for the desiccation-resistant ‘resurrection’ fern Polypodium polypodioides L. Plant, Cell and Environment, 15, 81–9.CrossRefGoogle Scholar
Nobel, P. S. (1978). Microhabitat, water relations, and photosynthesis of a desert fern, Notholaena parryi. Oecologia, 31, 293–309.CrossRefGoogle ScholarPubMed
Nobel, P. S. (1991). Physicochemical and Environmental Plant Physiology. San Diego, CA, USA: Academic Press.Google Scholar
Oliver, M. J., Tuba, Z. and Mishler, B. D. (2000). The evolution of vegetative desiccation tolerance in land plants. Plant Ecology, 151, 85–100.CrossRefGoogle Scholar
Ong, B. L. and Ng, L. (1998). Regeneration of drought-stressed gametophytes of the epiphytic fern, Pyrrosia piloselloides (L.) Price. Plant Cell Reports, 18, 225–8.CrossRefGoogle Scholar
Ong, B. L., Kluge, M. and Friemert, V. (1986). Crassulacean acid metabolism in the epiphytic ferns Drymoglossum piloselloides and Pyrrosia longifolia: studies on responses to environmental signals. Plant, Cell and Environment, 9, 547–57.Google Scholar
Page, C. N. (1979). The diversity of ferns. An ecological perspective. In The Experimental Biology of Ferns, ed. Dyer, A. F.. London: Academic Press, pp. 9–56.Google Scholar
Page, C. N. (2002). Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology, 119, 1–33.CrossRefGoogle Scholar
Pandé, S. K. (1935). Notes on the anatomy of a xerophytic fern Niphobolus adnascens from the Malay peninsula. Proceedings of the Indian Academy of Sciences, Section B, 1, 556–64.Google Scholar
Pence, V. C. (2000). Cryopreservation of in vitro grown fern gametophytes. American Fern Journal, 90, 16–23.CrossRefGoogle Scholar
Pickett, F. L. (1931). Notes on xerophytic ferns. American Fern Journal, 21, 49–57.CrossRefGoogle Scholar
Pierce, S., Winter, K. and Griffiths, H. (2002). Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae. New Phytologist, 156, 75–83.CrossRefGoogle Scholar
Porembski, S. and Barthlott, W. (2000). Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecology, 151, 19–28.CrossRefGoogle Scholar
Powles, S. B. (1984). Photoinhibition of photosynthesis induced by visible light. Annual Review of Plant Physiology, 35, 15–44.CrossRefGoogle Scholar
Proctor, M. C. F. (2003). Comparative ecophysiological measurements on the light responses, water relations and desiccation tolerance of the filmy ferns Hymenophyllum wilsonii Hook, and H. tunbrigense (L.) Smith. Annals of Botany, 91, 717–27.CrossRefGoogle ScholarPubMed
Proctor, M. C. F. and Tuba, Z. (2002). Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytologist, 156, 327–49.CrossRefGoogle Scholar
Reynolds, T. L. and Bewley, J. D. (1993a). Abscisic acid enhances the ability of the desiccation-tolerant fern Polypodium virginianum to withstand drying. Journal of Experimental Botany, 44, 1771–9.CrossRefGoogle Scholar
Reynolds, T. L. and Bewley, J. D. (1993b). Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium virginianum: comparison of the effects of drying, rehydration and abscisic acid. Journal of Experimental Botany, 44, 921–8.CrossRefGoogle Scholar
Ribeiro, M. L. R. C., Santos, M. G. and Moraes, M. G. (2007). Leaf anatomy of two Anemia Sw. species (Schizaeaceae: Pteridophyte) from a rocky outcrop in Niterói, Rio de Janeiro, Brazil. Revista Brasileira de Botânica, 30, 695–702.Google Scholar
Rivera, G., Elliott, S., Caldas, L., et al. (2002). Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees – Structure and Function, 16, 445–56.CrossRefGoogle Scholar
Rut, G., Krupa, J., Miszalski, Z., Rzepka, A. and Ślesak, I. (2008). Crassulacean acid metabolism in the epiphytic fern Platycerium bifurcatum. Photosynthetica, 46, 156–60.CrossRefGoogle Scholar
Schreuder, M. D. J., Brewer, C. A. and Heine, C. (2001). Modeled influences of non-exchanging trichomes on leaf boundary layers and gas exchange. Journal of Theoretical Biology, 210, 23–32.CrossRefGoogle ScholarPubMed
Schulze, E.-D., Beck, E. and Müller-Hohenstein, K. (2005). Plant Ecology. Berlin, Germany: Springer-Verlag.Google Scholar
Shreve, F. (1911). Studies on Jamaican Hymenophyllaceae. Botanical Gazette, 51, 184–209.CrossRefGoogle Scholar
Sinclair, R. (1983). Water relations of tropical epiphytes. I. Relationships between stomatal resistance, relative water content and the components of water potential. Journal of Experimental Botany, 34, 1652–63.CrossRefGoogle Scholar
Starnecker, G. and Winkler, S. (1982). Zur Ökologie epiphytischer Farne in Südbrasilien. II. Anatomische und physiologische Anpassungen. Flora, 172, 57–68.CrossRefGoogle Scholar
Stone, C. and Pratt, L. W. (1995). Hawai‘i's Plants and Animals: Biological Sketches of Hawai‘i Volcanoes National Park. Honolulu, HI, USA: University of Hawai‘i Press.Google Scholar
Stuart, T. S. (1968). Revival of respiration and photosynthesis in dried leaves of Polypodium polypodioides. Planta, 83, 185–206.CrossRefGoogle ScholarPubMed
Tausz, M., Hietz, P. and Briones, O. (2001). The significance of carotenoids and tocopherols in photoprotection of seven epiphytic fern species of a Mexican cloud forest. Australian Journal of Plant Physiology, 28, 775–83.Google Scholar
Tryon, R. M. (1964). Evolution in the leaf of living ferns. Bulletin of the Torrey Botanical Club, 21, 73–85.Google Scholar
Tryon, R. M., and Tryon, A. F. (1982). Ferns and Allied Plants with Special Reference to Tropical America. New York: Springer-Verlag.CrossRefGoogle Scholar
Tyree, M. T. and Sperry, J. S. (1989). Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19–38.CrossRefGoogle Scholar
Watkins, J. E., Jr., Kawahara, A. Y., Leicht, S. A., et al. (2006). Fern laminar scales protect against photoinhibition from excess light. American Fern Journal, 96, 83–92.CrossRefGoogle Scholar
Watkins, J. E., Jr., Mack, M. C., Sinclair, T. R. and Mulkey, S. S. (2007a). Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytologist, 176, 708–17.CrossRefGoogle ScholarPubMed
Watkins, J. E., Jr., Rundel, P. and Cardelús, C. (2007b). The influence of life form on carbon and nitrogen relationships in tropical rainforest ferns. Oecologia, 153, 225–32.CrossRefGoogle ScholarPubMed
Winter, K., Wallace, B. J., Stocker, G. C. and Roksandic, Z. (1983). Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia, 57, 129–41.CrossRefGoogle ScholarPubMed
Winter, K., Osmond, C. B. and Hubick, K. T. (1986). Crassulacean acid metabolism in the shade: studies on an epiphytic fern, Pyrrosia longifolia, and other rain forest species from Australia. Oecologia, 68, 224–30.CrossRefGoogle ScholarPubMed
Wollenweber, E. (1978). The distribution and chemical constituents of the farinose exudates in gymnogrammoid ferns. American Fern Journal, 68, 13–28.CrossRefGoogle Scholar
Wollenweber, E., Scheele, C. and Tryon, A. F. (1987). Flavonoids and spores of Platyzoma microphyllum, an endemic fern of Australia. American Fern Journal, 77, 28–32.CrossRefGoogle Scholar
Woodhouse, R. M. and Nobel, P. S. (1982). Stipe anatomy, water potentials, and xylem conductances in seven species of ferns (Filicopsida). American Journal of Botany, 69, 135–40.CrossRefGoogle Scholar
Zotz, G. (2005). Vascular epiphytes in the temperate zones: a review. Plant Ecology, 176, 173–83.CrossRefGoogle Scholar
Zotz, G. and Ziegler, H. (1997). The occurrence of crassulacean acid metabolism among vascular epiphytes from central Panama. New Phytologist, 137, 223–9.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×