Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-lntk7 Total loading time: 0 Render date: 2024-04-30T09:17:08.569Z Has data issue: false hasContentIssue false

3 - Hunter-Gatherer Persistence and Demography in Patagonia (Southern South America): The Impact of Ecological Changes during the Pleistocene and Holocene

Published online by Cambridge University Press:  23 November 2018

Daniel H. Temple
Affiliation:
George Mason University, Virginia
Christopher M. Stojanowski
Affiliation:
Arizona State University
Get access

Summary

This chapter considers faunal and demographic evidence of hunter-gatherer resilience in Patagonia during the late Pleistocene and early Holocene. Results suggest that hunter-gatherers from Northwest and South Patagonia were resilient to the significant ecological changes that occurred during this time period manifest in an estimated rate of population growth that was resistant to concomitant changes in the diversity of available resources as a consequence of mega-faunal extinctions around 10 000 years ago. The resistance of hunter-gatherers from Patagonia reflects the ability of human populations to absorb the impact of relatively slow ecological changes. The chronological association between the demographic dynamics and archaeological evidence suggests that cultural responses maintained population density. Some differences were regionally apparent, however, with soouthern populations exhibiting a constant growth rate oand Northwest populations presenting an increasing growth. As such, demographic resilience is mediated by differing modes of cultural adaptation to environmental challenges.
Type
Chapter
Information
Hunter-Gatherer Adaptation and Resilience
A Bioarchaeological Perspective
, pp. 47 - 64
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. (2010). Species Richness: Patterns in the Diversity of Life. Heidelberg: Springer.Google Scholar
Barberena, R., Borrazzo, K., Rughini, A. A., et al. (2015). Perspectivas arqueológicas para Patagonia Septentrional: Sitio Cueva Huenul 1 (Provincia del Neuquén, Argentina). Magallania, 43, 137163.CrossRefGoogle Scholar
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L., and Shabel, A. B. (2004). Assessing the causes of late Pleistocene extinctions on the continents. Science, 306, 7075.Google Scholar
Bernal, V., Gonzalez, P. N., Gordón, F., and Perez, S. I. (2016). Exploring dietary patterns in the southernmost limit of pre-Hispanic agriculture in America by using Bayesian stable isotope mixing models. Current Anthropology, 57, 230239.Google Scholar
Bobillo, M. C., Zimmermann, B., Sala, A., et al. (2010). Amerindian mitochondrial DNA haplogroups predominate in the population of Argentina: Towards a first nationwide forensic mitochondrial DNA sequence database. International Journal of Legal Medicine, 124, 263268.Google Scholar
Bodner, M., Perego, U. A., Huber, G., et al. (2012). Rapid coastal spread of First Americans: Novel insights from South America’s Southern Cone mitochondrial genomes. Genome Research, 22, 811820.CrossRefGoogle ScholarPubMed
Borrero, L. A. (2009). The elusive evidence: The archeological record of the South American extinct megafauna. In Haynes, G., ed., American Megafaunal Extinctions at the End of the Pleistocene, Dordrecht: Springer, pp. 145168.CrossRefGoogle Scholar
Cardich, A. R., Cardich, L. A., and Hajduk, A. (1973). Secuencia arqueológica y cronológica radiocarbónica de la cueva 3 de Los Toldos (Santa Cruz, Argentina). Relaciones de la Sociedad Argentina de Antropología, 7, 85123.Google Scholar
Carmody, R. N, Weintraub, G. S., and Wrangham, R. W. (2011). Energetic consequences of thermal and nonthermal food processing. Proceedings of the National Academy of Sciences, 108, 1919919203.CrossRefGoogle ScholarPubMed
Cassiodoro, G. and Tessone, A. (2014). Análisis radiocarbónico y de isótopos estables en residuos cerámicos del centro-oeste de Santa Cruz (Patagonia). Relaciones de la Sociedad Argentina de Antropología, 39, 293299.Google Scholar
Catelli, M. L., Álvarez-Iglesias, V., Gómez-Carballa, A., et al. (2011). The impact of modern migrations on present-day multi-ethnic Argentina as recorded on the mitochondrial DNA genome. BMC Genetics, 12, 77Google Scholar
Cione, A. L., Tonni, E. P., and Soibelzon, L. (2009). Did humans cause the Late Pleistocene–Early Holocene mammalian extinctions in South America in a context of shrinking open areas? In Haynes, G., ed., American Megafaunal Extinctions at the End of the Pleistocene. Dordrecht: Springer, pp. 125144.Google Scholar
Connell, S. D. and Ghedini, G. (2015). Resisting regime-shifts: The stabilising effect of compensatory processes. Trends in Ecology & Evolution, 30, 513515.Google Scholar
Cordero, A. (2007). Cambios en la amplitud de dieta de cazadores recolectores de Patagonia septentrional desde c. 10 000 AP hasta el presente. In Ramos, M. and Néspolo, E., eds., Signos en el Tiempo y Rastros en la Tierra, Lujan: Universidad Nacional de Luján, pp. 127134.Google Scholar
Cordero, A. (2009). Arqueofauna de las primeras ocupaciones de cueva Epullán Grande. Cuadernos de Antropología, 5, 159188.Google Scholar
Cordero, A. (2010). Explotación animal en el Holoceno del noroeste de la Patagonia Argentina. Cambios climáticos y transformaciones del comportamiento humano: Una primera aproximación. Doctoral dissertation, Facultad de Filosofía y Letras, Universidad de Buenos Aires.Google Scholar
Cordero, A. (2011). Subsistencia y movilidad de los cazadores-recolecto res que ocuparon Cueva Traful I durante el Holoceno Medio y Tardío. Comechingonia Virtual 5, 158202.Google Scholar
de la Fuente, C., Galimany, J., Kemp, B. M., et al. (2015). Ancient marine hunter-gatherers from Patagonia and Tierra Del Fuego: Diversity and differentiation using uniparentally inherited genetic markers. American Journal of Physical Anthropology, 158, 719729.Google Scholar
De Nigris, M. E. (2004). El consumo en grupos cazadores recolectores: Un ejemplo zooarqueológico de Patagonia Meridional. Buenos Aires: Sociedad Argentina de Antropología.Google Scholar
de Saint Pierre, M., Bravi, C. M., Motti, J. M., et al. (2012a). An alternative model for the early peopling of southern South America revealed by analyses of three mitochondrial DNA haplogroups. PLoS One, 7, e43486.CrossRefGoogle ScholarPubMed
de Saint Pierre, M., Gandini, F., Perego, U. A., et al. (2012b). Arrival of Paleo-Indians to the southern cone of South America: New clues from mitogenomes. PLoS One, 7, e51311.CrossRefGoogle Scholar
Della Negra, C. E. (2008). Gubevi I: Un sitio con restos óseos humanos asociados a cerámica en el departamento de Minas, zona norte de la provincia del Neuquén. In Azar, P. F., Cuneo, E. M., and Rodríguez, S. N., eds., Tras la senda de los ancestros: Arqueología de Patagonia. San Carlos de Bariloche: 3º Jornadas de Historia de la Patagonia. CD publication.Google Scholar
Della Negra, C., Novellino, P., Gordón, F., et al. (2014). Áreas de entierro en cazadores-recolectores del Noroeste de Patagonia: Sitio Hermanos Lazcano (Chos Malal, Neuquén). RUNA, 35, 519Google Scholar
Drummond, A. J. and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.Google Scholar
Drummond, A. J., Rambaut, A., Shapiro, B., and Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185e1192Google Scholar
Drummond, A. J., Ho, S. Y. W., Phillips, M. J., et al. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88.Google Scholar
Emperaire, J., Laming-Emperaire, A., Reichlen, H., and Poulain-Josien, T. (1963). La grotte Fell et autres sites de la région volcanique de la Patagonie chilienne. Journal de la Société des Américanistes, 52, 167254.Google Scholar
Endicott, P. and Ho, S. Y. W. (2008). A Bayesian evaluation of human mitochondrial substitution rates. American Journal of Human Genetics, 82, 895902.Google Scholar
Fernández, J. and Panarello, H. (2001). Cazadores recolectores del holoceno medio y superior de la cueva Haichol, región cordillerana central del Neuquén, República Argentina: Cronología 14 C-AMS sobre colágeno óseo y su conversión a tiempo calendario. Signaturas isotópicas del carbono y del nitrógeno en el colágeno óseo, en función de trazadores paleodietéticos. Relaciones de la Sociedad Argentina de Antropología, 26, 930Google Scholar
García-Bour, J., Pérez-Pérez, A., Álvarez, S., et al. (2004). Early population differentiation in extinct aborigines from Tierra del Fuego-Patagonia: Ancient mtDNA sequence and Y chromosome STR characterization. American Journal of Physical Anthropology, 123, 361370.Google Scholar
García Guraieb, S., Goñi, R., and Tessone, A. (2015). Paleodemography of Late Holocene hunter-gatherers from Patagonia (Santa Cruz, Argentina): An approach using multiple archaeological and bioarchaelogical indicators. Quaternary International, 356, 147158.CrossRefGoogle Scholar
Ginther, C., Corach, D., Penacino, G. A., et al. (1993). Genetic variation among Mapuche Indians from the Patagonia region of Argentina: Mitochondrial DNA sequence variation and allele frequencies of several nuclear genes. In Pena, S. D. J., Chakraborty, R., Epplen, J. T., and Jeffreys, A. J., eds., DNA Fingerprinting: State of the Science. Basel: Birkhauser Verlag, pp. 211219.Google Scholar
Gordón, F., Perez, S. I., Hajduk, A., Lezcano, M., and Bernal, V. (2017). Dietary patterns in human populations from Northwest Patagonia during Holocene: An approach using Binford’s frames of reference and Bayesian isotope mixing models. Archaeological and Anthropological Science. DOI: 10.1007/s12520-016-0459-0.Google Scholar
Grayson, D. K. and Delpech, F. (1998). Changing diet breadth in the early Upper Palaeolithic of southwestern France. Journal of Archaeological Science, 25, 11191129.Google Scholar
Haynes, G. (2009). American Megafaunal Extinctions at the End of the Pleistocene. Dordrecht: Springer.Google Scholar
Ho, S. Y. W. and Shapiro, B. (2011). Skyline-plot methods for estimating demographic history from nucleotide sequences. Molecular Ecology Resources, 11, 423e434.CrossRefGoogle ScholarPubMed
Hodgson, D., McDonald, J. L., and Hosken, D. J. (2015). What do you mean, “resilient”? Trends in Ecology & Evolution, 30, 503506.Google Scholar
Hoover, K. C. and Hudson, M. J. (2016). Resilience in prehistoric persistent hunter-gatherers in northwest Kyushu, Japan as assessed by population health and archaeological evidence. Quaternary International, 405B, 2233.Google Scholar
Hubbe, A., Hubbe, M., and Neves, W. (2007). Early Holocene survival of megafauna in South America. Journal of Biogeography, 34, 16421646.Google Scholar
Inchausti, P. and Halley, J. (2003). On the relation between temporal variability and persistence time in animal populations. Journal of Animal Ecology, 72, 899908.Google Scholar
Katoh, K. and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772780.Google Scholar
Koch, P. L. and Barnosky, A. D. (2006). Late Quaternary extinctions: State of the debate. Annual Review in Ecology, Evolution and Systematics, 37, 215250.Google Scholar
Lema, V. S., Della Negra, C., and Bernal, V. (2012). Explotaci on de recursos vegetales silvestres y domesticados en Neuqu en: Implicancias del hallazgo de restos de maíz y algarrobo en artefactos de molienda del Holoceno tardío. Magallania, 40, 229247.Google Scholar
Lezcano, M. J., Hajduk, A., and Albornoz, A. M. (2010). El menú a la carta en el bosque¿ entrada o plato fuerte?: Una perspectiva comparada desde la zooarqueología del sitio El Trébol (lago Nahuel Huapi, Pcia. de Río Negro). In Gutiérrez, M., De Nigris, M., Fernández, P., et al., eds., Zooarqueología a principios del siglo XXI: aportes teóricos, metodológicos y casos de estudio. Buenos Aires: Ediciones del Espinillo, pp. 243257.Google Scholar
Lorenzen, E. D., Nogués-Bravo, D., Orlando, L., et al. (2011). Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 479, 359365.Google Scholar
Lyman, R. L. (2008). Quantitative Paleozoology. Cambridge: Cambridge University Press.Google Scholar
Marchionni, L. (2013). Comparación de las distintas historias tafonómicas en conjuntos zooarqueológicos provenientes de la Meseta Central de la provincia de Santa Cruz. Doctoral dissertation, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata.Google Scholar
McCulloch, R. D., Bentley, M. J., Purves, R. S., et al. (2000) Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science, 15, 409417.Google Scholar
Mengoni Goñalons, G. L. and Silveira, M. J. (1976). Análisis e interpretación de los restos faunísticos de la Cueva de las Manos, Estancia Alto Río Pinturas (Provincia de Santa Cruz). Relaciones de la Sociedad Argentina de Antropología, 10, 261270.Google Scholar
Miotti, L. (1996). Piedra Museo (Santa Cruz), nuevos datos para la ocupación Pleistocénica en Patagonia. In Otero, J. Gomez, ed., Arqueología: Solo Patagonia. Puerto Madryn: Universidad Nacional de la Patagonia, 2738.Google Scholar
Miotti, L. and Salemme, M. C. (2003). When Patagonia was colonized: People mobility at high latitudes during Pleistocene/Holocene transition. Quaternary International, 109110, 95111.Google Scholar
Moraga, M., Rocco, P., Miquel, J. F., et al. (2000). Mitochondrial DNA polymorphisms in Chilean aboriginal populations: Implications for the peopling of the southern cone of the continent. American Journal of Physical Anthropology, 113, 1929.Google Scholar
Moraga, M., de Saint Pierre, M., Torres, F., and Ríos, J. (2010). Vínculos de parentesco por vía materna entre los últimos descendientes de la etnia Kawésqar y algunos entierros en los canales patagónicos: Evidencia desde el estudio de linajes mitocondriales. Magallania, 38, 103114.Google Scholar
Nami, H. G. and Menegaz, A. (1991). Cueva del Medio: Aportes para el conocimiento de la diversidad faunística hacia el Pleistoceno-Holoceno en la Patagonia austral. Anales del Instituto de la Patagonia, 20, 117132.Google Scholar
Pallo, C. and Borrero, L. (2015). Arqueología de corredores boscosos en Patagonia Meridional: el caso del río Guillermo (SO de la provincia de Santa Cruz, Argentina). Intersecciones en Antropología, 16, 313326.Google Scholar
Paunero, R. S., Frank, A., Skarbun, F., et al. (2005). Arte rupestre en Estancia La María, meseta central de Santa Cruz: Sectorización y contextos. Relaciones de la Sociedad Argentina de Antropología, 30, 147168.Google Scholar
Paunero, R. S., Frank, A. D., Skarbun, F., et al. (2007). Investigaciones arqueológicas en sitio Casa del Minero 1, Estancia La María, Meseta Central de Santa Cruz. In Morello, F., Martinic, M., Prieto, A., and Bahamonde, G., eds., Arqueología de Fuego Patagonia. Levantando piedras, desenterrando huesos … y develando arcanos. Punta Arenas: CEQUA, pp. 577588.Google Scholar
Perego, U. A., Achilli, A., Angerhofer, N., et al. (2009). Distinctive Paleo-Indian migration routes from Beringia marked by two rare mtDNA haplogroups. Current Biology, 19, 18.Google Scholar
Perez, S. I., Della Negra, C., Novellino, P., et al. (2009). Deformaciones artificiales del cráneo en cazadores-recolectores del Holoceno medio-tardío del noroeste de Patagonia. Magallania, 37, 720Google Scholar
Perez, S. I., Bernal, V., and Gonzalez, P. N. (2016). Past population dynamics in Northwest Patagonia: An estimation using molecular and radiocarbon data. Journal of Archaeological Science, 65, 154160.CrossRefGoogle Scholar
Perez, S. I., Postillone, M. B., and Rindel, D. (2017). Domestication and human demographic history in South America. American Journal of Physical Anthropology, 163, 4462.Google Scholar
Pires, M. M., Koch, P. L., Fariña, R. A., et al. (2016). The structure and dynamics of South American megafaunal assemblages and the aftermath of megafaunal extinctions in Patagonia. Paper presented at the IX Latin American Paleontology Conference, Lima, Peru.Google Scholar
Prates, L., Politis, G., and Steele, J. (2013). Radiocarbon chronology of the early human occupation of Argentina. Quaternary International, 301, 104122.Google Scholar
Rabassa, J. (2008). Late Cenozoic of Patagonia and Tierra del Fuego. Amsterdam: Elsevier.Google Scholar
Rambaut, A. and Drummond, A. J. (2007). Tracer v1.5. Available at: http://tree.bio.ed.ac.uk/software/tracer.Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379423.CrossRefGoogle Scholar
Silveira, M. J. (1979). Análisis de los restos faunísticos de la Cueva Grande del Arroyo Feo (Santa Cruz). Relaciones de la Sociedad Argentina de Antropología, 13, 229247.Google Scholar
Surovell, T. A., Byrd Finley, J., Smith, G. M., Brantingham, P. J., and Kelly, R. (2009). Correcting temporal frequency distributions for taphonomic bias. Journal of Archaeological Science, 36, 17151724.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 27252729.Google Scholar
Tessone, A., Zangrando, A. F., Barrientos, G., et al. (2009). Stable isotope studies in the Salitroso Lake Basin (southern Patagonia, Argentina): Assessing diet of Late Holocene hunter-gatherers. International Journal of Osteoarchaeology, 19, 297308.Google Scholar
Tonni, E. P. and Carlini, A. A. (2008). Neogene vertebrates from Argentine Patagonia: Their relationship with the most significant climatic changes. In Rabassa, J., ed., Late Cenozoic of Patagonia and Tierra del Fuego. Amsterdam: Elsevier, pp. 269282.Google Scholar
Torfing, T. (2015). Neolithic population and summed probability distribution of 14C dates. Journal of Archaeological Science, 63, 193198.Google Scholar
Turelli, M. (1978). A reexamination of stability in randomly varying versus deterministic environments with comments on the stochastic theory of limiting similarity. Theoretical Population Biology, 13, 244267.Google Scholar
Walker, B., Holling, C. S., Carpenter, S. R., and Kinzig, A. (2004). Resilience, adaptability and transformability in social–ecological systems. Ecology and Society, 9, 5.CrossRefGoogle Scholar
Willig, M. R., Kaufman, D. M., and Stevens, R. D. (2003). Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273309.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×