Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-01T07:35:10.317Z Has data issue: false hasContentIssue false

11 - PDMP-based glucosylceramide synthesis inhibitors for Gaucher and Fabry diseases

from SECTION III - UTILIZATION OF ALTERNATIVE PATHWAYS

Published online by Cambridge University Press:  17 November 2010

Jess G. Thoene
Affiliation:
University of Michigan, Ann Arbor
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Duve, C, Wattiaux, R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492CrossRefGoogle ScholarPubMed
Futerman, AH, Meer, G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 2004;5:554–565CrossRefGoogle ScholarPubMed
Lubke, T, Lobel, P, Sleat, . Proteomics of the lysosome. Biochim Biophys Acta. 2009;1793:625–635CrossRefGoogle ScholarPubMed
Brady, RO. Sphingolipidoses. Annu Rev Biochem. 1978;47:687–713CrossRefGoogle ScholarPubMed
Grabowski, GA, Horowitz, M. Gaucher's disease: Molecular, genetic and enzymological aspects. Baillieres Clin Haematol. 1997;10:635–656CrossRefGoogle ScholarPubMed
Shayman, JA, Killen, PD. Fabry disease. Mount, D.B., Pollaks, M.R., eds. Molecular and Genetic Basis of Renal Disease. Philadelphia, Saunders Elsevier, 195–199, 2008CrossRefGoogle Scholar
Branton, MH, Schiffmann, R, Sabnis, SG, Murray, GJ, Quirk, JM, Altarescu, G, Goldfarb, L, Brady, RO, Balow, JE, Austin, HA, Kopp, JB. Natural history of Fabry renal disease: Influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine (Baltimore). 2002;81:122–138CrossRefGoogle ScholarPubMed
Kornfeld, R, Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664CrossRefGoogle ScholarPubMed
Stahl, PD. The mannose receptor and other macrophage lectins. Curr Opin Immunol. 1992;4:49–52CrossRefGoogle ScholarPubMed
Brady, RO, Pentchev, PG, Gal, AE, Hibbert, SR, Dekaban, AS. Replacement therapy for inherited enzyme deficiency. Use of purified glucocerebrosidase in Gaucher's disease. N Engl J Med. 1974;291:989–993CrossRefGoogle ScholarPubMed
Cabrera-Salazar, MA, Novelli, E, Barranger, JA. Gene therapy for the lysosomal storage disorders. Curr Opin Mol Ther. 2002;4:349–358Google ScholarPubMed
Krivit, W, Peters, C, Shapiro, EG. Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III. Curr Opin Neurol. 1999;12:167–176CrossRefGoogle ScholarPubMed
Yu, Z, Sawkar, AR, Kelly, JW. Pharmacologic chaperoning as a strategy to treat Gaucher disease. FEBS J. 2007;274:4944–4950CrossRefGoogle ScholarPubMed
Radin, NS, Arora, RC, Ullman, MD, Brenkert, AL, Austin, J. A possible therapeutic approach to Krabbe's globoid leukodystrophy and the status of cerebroside synthesis in the disorder. Res Commun Chem Pathol Pharmacol. 1972;3:637–644Google ScholarPubMed
Radin, NS. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J. 1996;13:153–157CrossRefGoogle ScholarPubMed
Vunnam, RR, Radin, NS. Analogs of ceramide that inhibit glucocerebroside synthetase in mouse brain. Chem Phys Lipids. 1908;26:265–278CrossRefGoogle Scholar
Abe, A, Inokuchi, J, Jimbo, M, Shimeno, H, Nagamatsu, A, Shayman, JA, Shukla, GS, Radin, NS. Improved inhibitors of glucosylceramide synthase. J Biochem. 1992;111:191–196CrossRefGoogle ScholarPubMed
Abe, A, Radin, NS, Shayman, JA, Wotring, LL, Zipkin, RE, Sivakumar, R, Ruggieri, JM, Carson, KG, Ganem, B. Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J Lipid Res. 1995;36:611–621Google ScholarPubMed
Lee, L, Abe, A, Shayman, JA. Improved inhibitors of glucosylceramide synthase. J Biol Chem. 1999;274:14662–14669CrossRefGoogle ScholarPubMed
Shayman, JA, Lee, L, Abe, A, Shu, L. Inhibitors of glucosylceramide synthase. Methods Enzymol. 2000;311:373–387CrossRefGoogle ScholarPubMed
Abe, A, Shayman, JA, Radin, NS. A novel enzyme that catalyzes the esterification of N-acetylsphingosine. Metabolism of C2-ceramides. J Biol Chem. 1996;271:14383–14389CrossRefGoogle ScholarPubMed
Abe, A, Shayman, JA. Purification and characterization of 1-O-acylceramide synthase, a novel phospholipase A2 with transacylase activity. J Biol Chem. 1998;273:8467–8474CrossRefGoogle ScholarPubMed
Abe, A, Hiraoka, M, Shayman, JA. A role for lysosomal phospholipase A2 in drug induced phospholipidosis. Drug Metab Lett. 2007;1:49–53CrossRefGoogle ScholarPubMed
Abe, A, Shayman, JA. The role of negatively charged lipids in lysosomal phospholipase A2 function. J Lipid Res. 2009;50:2027–2035CrossRefGoogle ScholarPubMed
Hiraoka, M, Abe, A, Lu, Y, Yang, K, Han, X, Gross, RW, Shayman, JA. Lysosomal phospholipase A2 and phospholipidosis. Mol Cell Biol. 2006;26:6139–6148CrossRefGoogle ScholarPubMed
Basu, M, Kelly, P, O'Donnell, P, Miguel, M, Bradley, M, Sonnino, S, Banerjee, S, Basu, S. Ceramide glycanase activities in human cancer cells. Biosci Rep. 1999;19:449–460CrossRefGoogle ScholarPubMed
Inokuchi, J, Mizutani, A, Jimbo, M, Usuki, S, Yamagishi, K, Mochizuki, H, Muramoto, K, Kobayashi, K, Kuroda, Y, Iwasaki, K, Ohgami, Y, Fujiwara, M. A synthetic ceramide analog (L-PDMP) up-regulates neuronal function. Ann N Y Acad Sci. 1998;845:219–224CrossRefGoogle ScholarPubMed
Eitzman, DT, Bodary, PF, Shen, Y, Khairallah, CG, Wild, SR, Abe, A, Shaffer-Hartman, J, Shayman, JA. Fabry disease in mice is associated with age-dependent susceptibility to vascular thrombosis. J Am Soc Nephrol. 2003;14:298–302CrossRefGoogle ScholarPubMed
Bodary, PF, Shen, Y, Vargas, FB, Bi, X, Ostenso, KA, Gu, S, Shayman, JA, Eitzman, DT. Alpha-galactosidase A deficiency accelerates atherosclerosis in mice with apolipoprotein E deficiency. Circulation. 2005;111:629–632CrossRefGoogle ScholarPubMed
Park, JL, Whitesall, SE, D'Alecy, LG, Shu, L, Shayman, JA. Vascular dysfunction in the alpha-galactosidase A-knockout mouse is an endothelial cell-, plasma membrane-based defect. Clin Exp Pharmacol Physiol. 2008;35:1156–1163CrossRefGoogle ScholarPubMed
Abe, A, Arend, LJ, Lee, L, Lingwood, C, Brady, RO, Shayman, JA. Glycosphingolipid depletion in Fabry disease lymphoblasts with potent inhibitors of glucosylceramide synthase. Kidney Int. 2000;57:446–454CrossRefGoogle ScholarPubMed
Abe, A, Gregory, S, Lee, L, Killen, PD, Brady, RO, Kulkarni, A, Shayman, JA. Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation. J Clin Invest. 2000;105:1563–1571CrossRefGoogle ScholarPubMed
Xu, YH, Quinn, B, Witte, D, Grabowski, GA. Viable mouse models of acid beta-glucosidase deficiency: The defect in Gaucher disease. Am J Pathol. 2003;163:2093–2101CrossRefGoogle ScholarPubMed
McEachern, KA, Fung, J, Komarnitsky, S, Siegel, CS, Chuang, WL, Hutto, E, Shayman, JA, Grabowski, GA, Aerts, JM, Cheng, SH, Copeland, DP, Marshall, J. A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease. Mol Genet Metab. 2007;91:259–267CrossRefGoogle ScholarPubMed
Hollak, CE, van Weely, S, van Oers, MH, Aerts, JM. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93:1288–1292CrossRefGoogle ScholarPubMed
Weinreb, NJ, Barranger, JA, Charrow, J, Grabowski, GA, Mankin, HJ, Mistry, P. Guidance on the use of miglustat for treating patients with type 1 Gaucher disease. Am J Hematol. 2005;80:223–229CrossRefGoogle ScholarPubMed
Ratner, L, vander Heyden, N, Dedera, D. Inhibition of HIV and SIV infectivity by blockade of alpha-glucosidase activity. Virology. 1991;181:180–192CrossRefGoogle ScholarPubMed
Platt, FM, Neises, GR, Dwek, RA, Butters, TD. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem. 1994;269:8362–8365Google ScholarPubMed
Cox, T, Lachmann, R, Hollak, C, Aerts, J, Weely, S, Hrebicek, M, Platt, F, Butters, T, Dwek, R, Moyses, C, Gow, I, Elstein, D, Zimran, A. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet. 2000;355:1481–1485CrossRefGoogle ScholarPubMed
Elstein, D, Hollak, C, Aerts, JM, Weely, S, Maas, M, Cox, TM, Lachmann, RH, Hrebicek, M, Platt, FM, Butters, TD, Dwek, RA, Zimran, A. Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. J Inherit Metab Dis. 2004;27:757–766CrossRefGoogle Scholar
Platt, FM, Neises, GR, Reinkensmeier, G, Townsend, MJ, Perry, VH, Proia, RL, Winchester, B, Dwek, RA, Butters, TD. Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science. 1997;276:428–431CrossRefGoogle ScholarPubMed
Platt, FM, Reinkensmeier, G, Dwek, RA, Butters, TD. Extensive glycosphingolipid depletion in the liver and lymphoid organs of mice treated with N-butyldeoxynojirimycin. J Biol Chem. 1997;272:19365–19372CrossRefGoogle ScholarPubMed
Sanchez-Olle, G, Duque, J, Egido-Gabas, M, Casas, J, Lluch, M, Chabas, A, Grinberg, D, Vilageliu, L. Promising results of the chaperone effect caused by imino sugars and aminocyclitol derivatives on mutant glucocerebrosidases causing Gaucher disease. Blood Cells Mol Dis. 2009;42:159–166CrossRefGoogle ScholarPubMed
Brumshtein, B, Greenblatt, HM, Butters, TD, Shaaltiel, Y, Aviezer, D, Silman, I, Futerman, AH, Sussman, JL. Crystal structures of complexes of N-butyl- and N-nonyl-deoxynojirimycin bound to acid beta-glucosidase: Insights into the mechanism of chemical chaperone action in Gaucher disease. J Biol Chem. 2007;282:29052–29058CrossRefGoogle ScholarPubMed
Mistry, PK. Treatment of Gaucher's disease with OGT 918. Lancet. 2000;356:676–677CrossRefGoogle ScholarPubMed
Heare, T, Alp, NJ, Priestman, DA, Kulkarni, AB, Qasba, P, Butters, TD, Dwek, RA, Clarke, K, Channon, KM, Platt, FM. Severe endothelial dysfunction in the aorta of a mouse model of Fabry disease; partial prevention by N-butyldeoxynojirimycin treatment. J Inherit Metab Dis. 2007;30:79–87CrossRefGoogle ScholarPubMed
Sawkar, AR, Cheng, WC, Beutler, E, Wong, CH, Balch, WE, Kelly, JW. Chemical chaperones increase the cellular activity of N370S beta-glucosidase: A therapeutic strategy for Gaucher disease. Proc Natl Acad Sci USA. 2002;99:15428–15433CrossRefGoogle ScholarPubMed
Shapiro, BE, Pastores, GM, Gianutsos, J, Luzy, C, Kolodny, EH. Miglustat in late-onset Tay-Sachs disease: A 12-month, randomized, controlled clinical study with 24 months of extended treatment. Genet Med. 2009;11:425–433CrossRefGoogle ScholarPubMed
Schiffmann, R, Fitzgibbon, EJ, Harris, C, DeVile, C, Davies, EH, Abel, L, Schaik, IN, Benko, W, Timmons, M, Ries, M, Vellodi, A. Randomized, controlled trial of miglustat in Gaucher's disease type 3. Ann Neurol. 2008;64:514–522CrossRefGoogle ScholarPubMed
Tropak, MB, Kornhaber, GJ, Rigat, BA, Maegawa, GH, Buttner, JD, Blanchard, JE, Murphy, C, Tuske, SJ, Coales, SJ, Hamuro, Y, Brown, ED, Mahuran, DJ. Identification of pharmacological chaperones for Gaucher disease and characterization of their effects on beta-glucocerebrosidase by hydrogen/deuterium exchange mass spectrometry. Chembiochem. 2008;9:2650–2662CrossRefGoogle ScholarPubMed
Fan, JQ, Ishii, S, Asano, N, Suzuki, Y. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med. 1999;5:112–115CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×