Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T16:17:56.724Z Has data issue: false hasContentIssue false

2 - A Supply Chain Approach to Biochar Systems

from Part I - The Interdisciplinary Approach

Published online by Cambridge University Press:  01 December 2016

Viktor J. Bruckman
Affiliation:
Austrian Academy of Sciences
Esin Apaydın Varol
Affiliation:
Anadolu University, Turkey
Bașak B. Uzun
Affiliation:
Anadolu University, Turkey
Jay Liu
Affiliation:
Pukyong National University, South Korea
Get access

Summary

Abstract

Biochar systems are designed to meet four related primary objectives: improve soils, manage waste, generate renewable energy, and mitigate climate change. Supply chain models provide a holistic framework for examining biochar systems with an emphasis on product life cycle and end use. Drawing on concepts in supply chain management and engineering, this chapter presents biochar as a manufactured product with a wide range of feedstocks, production technologies, and end use options. Supply chain segments are discussed in detail using diverse examples from agriculture, forestry and other sectors that cut across different scales of production and socioeconomic environments. Particular attention is focused on the environmental impacts of different production and logistics functions, and the relationship between supply chain management and life cycle assessment. The connections between biochar supply chains and those of various co-products, substitute products, and final products are examined from economic and environmental perspectives. For individuals, organizations, and broad associations connected by biochar supply and demand, achieving biochar’s potential benefits efficiently will hinge on understanding, organizing, and managing information, resources and materials across the supply chain, moving biochar from a nascent to an established industry.

Type
Chapter
Information
Biochar
A Regional Supply Chain Approach in View of Climate Change Mitigation
, pp. 25 - 45
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, N., Chung, W., Loeffler, D. and Jones, J. G. (2012). A productivity and cost comparison of two systems for producing biomass fuel from roadside forest treatment residues. Forest Products Journal, 62, pp. 223233.CrossRefGoogle Scholar
Anderson, N., Jones, J.G., Page-Dumroese, D., et al. (2013). A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass. Energies, 6, pp. 164183.CrossRefGoogle Scholar
Ariyadejwanich, P., Tanthapanichakoon, W., Nakagawa, K., Mukai, S. R. and Tamon, H. (2003). Preparation and characterization of mesoporous activated carbon from waste tires. Carbon, 41, pp. 57164.CrossRefGoogle Scholar
Azargohar, R. and Dalai, A. K. (2006). Biochar as a precursor of activated carbon. Applied Biochemistry and Biotechnology, 129132, pp. 762773.Google ScholarPubMed
Christopher, M. (2011). Logistics and Supply Chain Management. 4th Edition. Harlow, Essex: Pearson.Google Scholar
Deleney, M. (2015). Northwest Biochar Commercialization Strategy Paper. [online] Available at: http://nwbiochar.org/sites/default/files/sites/default/files/attached/nw_biochar_strategy_02-24-15.pdf [Accessed 16 March 2015].Google Scholar
Downie, A., Munroe, P., Cowie, A., Van Zwieten, L. and Lau, D. (2012). Biochar as a geoengineering climate solution: hazard identification and risk management. Critical Reviews in Environmental Science and Technology, 42, pp. 225250.CrossRefGoogle Scholar
Duku, M. H., Gu, S. and Hagan, E. B. (2011). Biochar production potential in Ghana – a review. Renewable and Sustainable Energy Reviews, 15, pp. 35393551.CrossRefGoogle Scholar
Dumroese, K., Heiskanen, J., Englund, K. and Tervahauta, A. (2011). Pelleted biochar: chemical and physical properties show potential use as a substrate in container nurseries. Biomass and Bioenergy, 35, pp. 20182027.CrossRefGoogle Scholar
Fellet, G., Marchiol, L., Delle Vedove, G. and Peressotti, A. (2011). Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere, 83, pp. 12621267.CrossRefGoogle ScholarPubMed
Forest Stewardship Council (FSC, 2010). FSC-US Forest Management Standard Version 1.0. [online] Available at: https://ic.fsc.org/national-standards.247.htm [Accessed 16 March 2015].Google Scholar
Gaunt, J. L. and Cowie, A. (2009). Biochar, greenhouse gas accounting, and emissions trading. Chapter 18. In: Lehman, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. London: Earthscan.Google Scholar
Goetschalckx, M. (2011). Supply Chain Engineering. New York: Springer.CrossRefGoogle Scholar
Hagelaar, G. and van der Vorst, J. (2002). Environmental supply chain management: using life cycle assessment to structure supply chains. International Food and Agribusiness Management Review, 4, pp. 399412.CrossRefGoogle Scholar
International Biochar Initiative (IBI, 2014). Standardized Product Definition and Product Testing Guidelines for Biochar That is Used in Soil. [online] Available at: www.biochar-international.org/characterizationstandard [Accessed 16 March 2015].Google Scholar
Jack, B. K., Kousky, C. and Sims, K. (2008). Designing payments for ecosystem services: lessons from previous experience with incentive-based mechanisms. Proceedings of the National Academy of Sciences, 105, pp. 94659470.CrossRefGoogle ScholarPubMed
Keefe, R., Anderson, N., Hogland, J. and Muhlenfeld, K. (2014). Woody biomass logistics. Chapter 14. In: Karlen, D. (ed.) Cellulosic Energy Cropping Systems. Chichester, West Sussex: John Wiley and Sons.Google Scholar
Kim, D., Anderson, N. and Chung, W. (2015). Financial performance of a mobile pyrolysis system used to produce biochar from sawmill residues. Forest Products Journal, 65, pp. 189197.CrossRefGoogle Scholar
Laser, M. and Lynd, L. (2014). Introduction to cellulosic energy crops. Chapter 1. In: Karlen, D. (ed.) Cellulosic Energy Cropping Systems. Chichester, West Sussex: John Wiley and Sons.Google Scholar
Leach, M., Fairhead, J. and Fraser, J. (2012). Green grabs and biochar: revaluing African soils and farming in the new carbon economy. Journal of Peasant Studies, 39, pp. 285307.CrossRefGoogle Scholar
Lehmann, J. and Joseph, S. (2009). Biochar for environmental management: an introduction. Chapter 1. In: Lehman, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. London: Earthscan.Google Scholar
Leonardo Academy (2012). National Sustainable Agriculture Standard, LEO-4000. Madison, WI: Leonardo Academy.Google Scholar
Loeffler, D. and Anderson, N. (2014). Emissions tradeoffs associated with cofiring forest biomass with coal: a case study in Colorado, USA. Applied Energy, 113, 6777.CrossRefGoogle Scholar
Mathews, J. A. (2008). Carbon-negative biofuels. Energy Policy, 36, pp. 940945.CrossRefGoogle Scholar
Odesola, I. F. and Owoseni, T. A. (2010). Development of local technology for a small-scale biochar production processes from agricultural wastes. Journal of Emerging Trends in Engineering and Applied Sciences, 1, 205208.Google Scholar
Reza, M. T., Uddin, M. H., Lynam, J. and Coronella, C. (2014). Engineered pellets from dry torrefied and HTC biochar blends. Biomass and Bioenergy, 63, 229238.CrossRefGoogle Scholar
Roberts, K., Gloy, B., Joseph, S., Scott, N. and Lehmann, J. (2010). Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental Science and Technology, 44, 827833.CrossRefGoogle ScholarPubMed
Rocke, M. (2014). Cool Planet starts construction on first commercial facility: Louisiana facility to produce green fuels and biochar from sustainable wood residues. [online] Available at: www.bloomberg.com/bb/newsarchive/aB3nqCdei4c0.html [Accessed 16 March 2015].Google Scholar
Sparrevik, M., Field, J. L., Martinsen, V., Breedveld, G. D. and Cornelissen, G. (2013). Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia. Environmental Science and Technology, 47, pp. 12061215.CrossRefGoogle ScholarPubMed
Stock, J. R. and Lambert, D. M. (2001). Strategic Logistics Management. 4th Edition. New York: McGraw-Hill.Google Scholar
Vasilyeva, G. K., Strijakova, E. R. and Shea, P. J. (2006). Use of activated carbon for soil remediation, pp. 309322. In: Twardowska, I., Allen, H. E., Haggblom, M. M. and Stefaniak, S. (eds.) Soil and Water Pollution Monitoring, Protection and Remediation. New York: Springer.CrossRefGoogle Scholar
Wang, Z., Dunn, J. B., Han, J. and Wang, M. Q. (2014). Effects of co-produced biochar on life cycle greenhouse gas emissions of pyrolysis-derived renewable fuels. Biofuels, Bioproducts and Biorefining, 8, pp. 189204.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×