Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-01T06:05:59.380Z Has data issue: false hasContentIssue false

Action Understanding

Published online by Cambridge University Press:  10 April 2024

Angelika Lingnau
Affiliation:
Universität Regensburg, Germany
Paul Downing
Affiliation:
Bangor University

Summary

The human ability to effortlessly understand the actions of other people has been the focus of research in cognitive neuroscience for decades. What have we learned about this ability, and what open questions remain? In this Element the authors address these questions by considering the kinds of information an observer may gain when viewing an action. A 'what, how, and why' framing organises evidence and theories about the representations that support classifying an action; how the way an action is performed supports observational learning and inferences about other people; and how an actor's intentions are inferred from her actions. Further evidence shows how brain systems support action understanding, from research inspired by 'mirror neurons' and related concepts. Understanding actions from vision is a multi-faceted process that serves many behavioural goals, and is served by diverse mechanisms and brain systems.
Get access
Type
Element
Information
Online ISBN: 9781009386630
Publisher: Cambridge University Press
Print publication: 09 May 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdollahi, R. O., Jastorff, J., & Orban, G. A. (2013). Common and segregated processing of observed actions in human SPL. Cerebral Cortex, 23(11), 27342753.CrossRefGoogle ScholarPubMed
Adams, R. B., Adams, R. B. Jr., Ambady, N., Nakayama, K., & Shimojo, S. (Eds.). (2011). The Science of Social Vision: The Science of Social Vision (Vol. 7). Oxford University Press.Google Scholar
Aflalo, T., Zhang, C. Y., Rosario, E. R., et al. (2020). A shared neural substrate for action verbs and observed actions in human posterior parietal cortex. Science Advances, 6(43), 116.CrossRefGoogle ScholarPubMed
Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 11091116.CrossRefGoogle ScholarPubMed
Aksoy, E. E., Orhan, A., & Wörgötter, F. (2017). Semantic decomposition and recognition of long and complex manipulation action sequences. International Journal of Computer Vision, 122(1), 84115. https://doi.org/10.1007/s11263-016-0956-8.CrossRefGoogle Scholar
Ambady, N., & Rosenthal, R. (1992). Thin slices of expressive behavior as predictors of interpersonal consequences: A meta-analysis. Psychological Bulletin, 111(2), 256274.CrossRefGoogle Scholar
Ambrosini, E., Costantini, M., & Sinigaglia, C. (2011). Grasping with the eyes. Journal of Neurophysiology, 106(3), 14371442.CrossRefGoogle ScholarPubMed
Ambrosini, E., Pezzulo, G., & Costantini, M. (2015). The eye in hand: Predicting others’ behavior by integrating multiple sources of information. Journal of Neurophysiology, 113(7), 22712279.CrossRefGoogle ScholarPubMed
Amoruso, L., & Finisguerra, A. (2019). Low or high-level motor coding? The role of stimulus complexity. Frontiers in Human Neuroscience, 13, 19.CrossRefGoogle ScholarPubMed
Amoruso, L., & Urgesi, C. (2016). Contextual modulation of motor resonance during the observation of everyday actions. NeuroImage, 134, 7484.CrossRefGoogle ScholarPubMed
Anzelotti, S., & Coutanche, M. N. (2018). Beyond functional connectivity: Investigating networks of multivariate representations. Trends in Cognitive Sciences, 22, 258269.CrossRefGoogle Scholar
Anzelotti, S., Caramazza, A., & Saxe, R. (2017). Multivariate pattern dependence. PloS Computational Biology, 20, 120. https://doi.org/10.1371/ journal.pcbi.1005799.Google Scholar
Arioli, M., & Canessa, N. (2019). Neural processing of social interaction: Coordinate-based meta-analytic evidence from human neuroimaging studies. Human Brain Mapping, 40(13), 37123737.CrossRefGoogle ScholarPubMed
Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33(6), 717746.CrossRefGoogle ScholarPubMed
Aviezer, H., Trope, Y., & Todorov, A. (2012). Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science, 338(6111), 12251229.CrossRefGoogle Scholar
Axelrod, R. (1980). Effective choice in the prisoner’s dilemma. Journal of Conflict Resolution, 24(1), 325.CrossRefGoogle Scholar
Ayzenberg, V., & Behrmann, M. (2022). Does the brain’s ventral visual pathway compute object shape? Trends in Cognitive Sciences, 11191132.CrossRefGoogle Scholar
Azaad, S., Knoblich, G., & Sebanz, N. (2021). Perception and Action in a Social Context. Cambridge University Press.CrossRefGoogle Scholar
Bach, P., & Schenke, K. C. (2017). Predictive social perception: Towards a unifying framework from action observation to person knowledge. Social and Personality Psychology Compass, 11(7), 117.CrossRefGoogle Scholar
Bach, P., Knoblich, G., Gunter, T. C., Friederici, A. D., & Prinz, W. (2005). Action comprehension: Deriving spatial and functional relations. Journal of Experimental Psychology: Human Perception and Performance, 31(3), 465479.Google ScholarPubMed
Bach, P., Peatfield, N. A., & Tipper, S. P. (2007). Focusing on body sites: The role of spatial attention in action perception. Experimental Brain Research, 178, 509517.CrossRefGoogle ScholarPubMed
Bach, P., Nicholson, T., & Hudson, M. (2014). The affordance-matching hypothesis: How objects guide action understanding and prediction. Frontiers in Human Neuroscience, 8, 113.CrossRefGoogle ScholarPubMed
Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as inverse planning. Cognition, 113, 329349.CrossRefGoogle ScholarPubMed
Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B. (2017). Rational quantitative attribution of beliefs, desires and percepts in human mentalizing. Nature Human Behaviour, 1(4), 110.CrossRefGoogle Scholar
Baldissera, F., Cavallari, P., Craighero, L., & Fadiga, L. (2001). Modulation of spinal excitability during observation of hand actions in humans. European Journal of Neuroscience, 13(1), 190194.CrossRefGoogle ScholarPubMed
Bandura, A., & Jeffrey, R. W. (1973). Role of symbolic coding and rehearsal processes in observational learning. Journal of Personality and Social Psychology, 26(1), 122130.CrossRefGoogle Scholar
Bandura, A., & Walters, R. H. (1977). Social Learning Theory (Vol. 1). Prentice Hall: Englewood cliffs.Google Scholar
Bar, M., Kassam, K. S., Ghuman, A. S., et al. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103(2), 449454.CrossRefGoogle ScholarPubMed
Bargh, J. A. (1989). Conditional automaticity: Varieties of automatic influence in social perception and cognition. Unintended Thought, 351.Google Scholar
Baumard, J., & Le Gall, D. (2021). The challenge of apraxia: Toward an operational definition? Cortex, 141, 6680.CrossRefGoogle ScholarPubMed
Bekkering, H., Wohlschlager, A., & Gattis, M. (2000). Imitation of gestures in children is goal-directed. The Quarterly Journal of Experimental Psychology: Section A, 53(1), 153164.CrossRefGoogle ScholarPubMed
Benoni, H. (2018). Can automaticity be verified utilizing a perceptual load manipulation? Psychonomic Bulletin & Review, 25(6), 20372046.CrossRefGoogle ScholarPubMed
Bestmann, S., & Krakauer, J. W. (2015). The uses and interpretations of the motor-evoked potential for understanding behaviour. Experimental Brain Research, 233, 679689.CrossRefGoogle ScholarPubMed
Betti, S., Finisguerra, A., Amoruso, L., & Urgesi, C. (2022). Contextual priors guide perception and motor responses to observed actions. Cerebral Cortex, 32(3), 608625.CrossRefGoogle ScholarPubMed
Beymer, D., & Poggio, T. (1996). Image representations for visual learning. Science, 272(5270), 19051909.CrossRefGoogle ScholarPubMed
Binkofski, F., & Buxbaum, L. J. (2013). Two action systems in the human brain. Brain and Language, 127(2), 222229.CrossRefGoogle ScholarPubMed
Bird, G., Osman, M., Saggerson, A., & Heyes, C. (2005). Sequence learning by action, observation and action observation. British Journal of Psychology, 96(3), 371388.CrossRefGoogle ScholarPubMed
Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 4773.CrossRefGoogle ScholarPubMed
Bonini, L., Rozzi, S., Serventi, F. U., et al. (2010). Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cerebral Cortex, 20, 13721385.CrossRefGoogle ScholarPubMed
Bonini, L., & Ferrari, P. F. (2011). Evolution of mirror systems: a simple mechanism for complex cognitive functions. Annals of the New York Academy of Sciences, 1225(1), 166175.CrossRefGoogle ScholarPubMed
Bonini, L., Maranesi, M., Livi, A., Fogassi, L., & Rizzolatti, G. (2014). Space-dependent representation of objects’and other’s action in monkey ventral premotor grasping neurons. Journal of Neuroscience, 34(11), 41084119.CrossRefGoogle ScholarPubMed
Bonini, L., Rotunno, C., Arcuri, E., & Gallese, V. (2022). Mirror neurons 30 years later: Implications and applications. Trends in Cognitive Sciences, 767781.CrossRefGoogle Scholar
Bower, G. H., Black, J. B., & Turner, T. J. (1979). Scripts in memory for text. Cognitive Psychology, 11(2), 177220.CrossRefGoogle Scholar
Bowers, J. S., Malhotra, G., Dujmović, M., et al. (2022). Deep problems with neural network models of human vision. Behavioral and Brain Sciences, 1–77, 174.Google Scholar
Brandman, T., & Peelen, M. V. (2017). Interaction between scene and object processing revealed by human fMRI and MEG decoding. Journal of Neuroscience, 37(32), 77007710.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44(2), 124143.CrossRefGoogle ScholarPubMed
Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: Inferential processes versus action simulation. Current Biology, 17(24), 21172121.CrossRefGoogle ScholarPubMed
Brincat, S. L., & Connor, C. E. (2004). Underlying principles of visual shape selectivity in posterior inferotemporal cortex. Nature Neuroscience, 7, 880886.CrossRefGoogle ScholarPubMed
Buxbaum, L. J., Shapiro, A. D., & Coslett, H. B. (2014). Critical brain regions for tool-related and imitative actions: A componential analysis. Brain, 137(7), 19711985.CrossRefGoogle ScholarPubMed
Cadieu, C. F., Hong, H., Yamins, D. L., et al. (2014). Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Computational Biology, 10(12), 118.CrossRefGoogle ScholarPubMed
Caggiano, V., Fogassi, L., Rizzolatti, G., Thier, P., & Casile, A. (2009). Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science, 324(5925), 403406.CrossRefGoogle ScholarPubMed
Caggiano, V., Fogassi, L., Rizzolatti, G., et al. (2011). View-based encoding of actions in mirror neurons of area f5 in macaque premotor cortex. Current Biology, 21(2), 144148.CrossRefGoogle ScholarPubMed
Caggiano, V., Fogassi, L., Rizzolatti, G., et al. (2012). Mirror neurons encode the subjective value of an observed action. Proceedings of the National Academy of Sciences, 109(29), 1184811853.CrossRefGoogle ScholarPubMed
Caggiano, V., Pomper, J. K., Fleischer, F., et al. (2013). Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions. Nature Communications, 4(1), 18.CrossRefGoogle ScholarPubMed
Caggiano, V., Fleischer, F., Pomper, J. K., Giese, M. A., & Thier, P. (2016). Mirror neurons in monkey premotor area F5 show tuning for critical features of visual causality perception. Current Biology, 26(22), 30773082.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15(8), 12431249.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 19051910.CrossRefGoogle ScholarPubMed
Camponogara, I., Rodger, M., Craig, C., & Cesari, P. (2017). Expert players accurately detect an opponent’s movement intentions through sound alone. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 348359.Google ScholarPubMed
Cappa, S. F., Binetti, G., Pezzini, A., et al. (1998). Object and action naming in Alzheimer’s disease and frontotemporal dementia. Neurology, 50(2), 351355.CrossRefGoogle ScholarPubMed
Caramazza, A., Anzellotti, S., Strnad, L., & Lingnau, A. (2014). Embodied cognition and mirror neurons: A critical assessment. Annual Review of Neuroscience, 37, 115.CrossRefGoogle ScholarPubMed
Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 6974.CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 11481167.CrossRefGoogle ScholarPubMed
Catmur, C. (2016). Automatic imitation? Imitative compatibility affects responses at high perceptual load. Journal of Experimental Psychology: Human Perception and Performance, 42(4), 530539.Google ScholarPubMed
Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17(17), 15271531.CrossRefGoogle ScholarPubMed
Cattaneo, L., Sandrini, M., & Schwarzbach, J. (2010). State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal and premotor cortices. Cerebral Cortex, 20(9), 22522258.CrossRefGoogle ScholarPubMed
Cavallo, A., Koul, A., Ansuini, C., Capozzi, F., & Becchio, C. (2016). Decoding intentions from movement kinematics. Scientific Reports, 6(1), 18.CrossRefGoogle ScholarPubMed
Cavanagh, P., Caplovitz, G. P., Lytchenko, T. K., Maechler, M. R., Tse, P. U., & Sheinberg, D. L. (2023). The Architecture of Object-Based Attention. Psychonomic Bulletin & Review, 125.CrossRefGoogle Scholar
Cerliani, L., Bhandari, R., De Angelis, L., et al. (2022). Predictive coding during action observation – A depth-resolved intersubject functional correlation study at 7T. Cortex, 148, 121138.CrossRefGoogle ScholarPubMed
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893–910.Google Scholar
Chersi, F., Ferrari, P. F., & Fogassi, L. (2011). Neuronal chains for actions in the parietal lobe: A computational model. PloS one, 6(11), 115.CrossRefGoogle ScholarPubMed
Chong, T. T. J., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 15761580.CrossRefGoogle ScholarPubMed
Chong, T. T. J., Cunnington, R., Williams, M. A., & Mattingley, J. B. (2009). The role of selective attention in matching observed and executed actions. Neuropsychologia, 47(3), 786795.CrossRefGoogle ScholarPubMed
Christensen, J. F., & Calvo-Merino, B. (2013). Dance as a subject for empirical aesthetics. Psychology of Aesthetics, Creativity, and the Arts, 7(1), 7688.CrossRefGoogle Scholar
Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62(1), 73101.CrossRefGoogle ScholarPubMed
Cichy, R. M., & Kaiser, D. (2019). Deep neural networks as scientific models. Trends in Cognitive Sciences, 23, 305317.CrossRefGoogle ScholarPubMed
Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 15851599.CrossRefGoogle ScholarPubMed
Cisek, P. (2019). Resynthesizing behavior through phylogenetic refinement. Attention, Perception, & Psychophysics, 81, 22652287.CrossRefGoogle ScholarPubMed
Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8(2), 240247.CrossRefGoogle Scholar
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37(2), 177192.CrossRefGoogle ScholarPubMed
Cracco, E., Bardi, L., Desmet, C., et al. (2018). Automatic imitation: A meta-analysis. Psychological Bulletin, 144(5), 453500.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. D. C., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. Neuroimage, 31(3), 12571267.CrossRefGoogle ScholarPubMed
Csibra, G. (2008). Action mirroring and action understanding: An alternative account. Sensorymotor Foundations of Higher Cognition: Attention and Performance XXII, 435459.Google Scholar
Cusack, J. P., Williams, J. H., & Neri, P. (2015). Action perception is intact in autism spectrum disorder. Journal of Neuroscience, 35(5), 18491857.CrossRefGoogle ScholarPubMed
Darda, K. M., & Ramsey, R. (2019). The inhibition of automatic imitation: A meta-analysis and synthesis of fMRI studies. NeuroImage, 197, 320329.CrossRefGoogle ScholarPubMed
de la Rosa, S., Schillinger, F. L., Bülthoff, H. H., Schultz, J., & Umildag, K. (2016). fMRI adaptation between action observation and action execution reveals cortical areas with mirror neuron properties in human BA 44/45. Frontiers in Human Neuroscience, 111. https://doi.org/10.3389/fnhum.2016.00078.CrossRefGoogle Scholar
de Lange, F. P., Spronk, M., Willems, R. M., Toni, I., & Bekkering, H. (2008). Complementary systems for understanding action intentions. Current Biology, 18(6), 454457.CrossRefGoogle ScholarPubMed
de Lange, F. P., Heilbron, M., & Kok, P. (2018). How do expectations shape perception? Trends in Cognitive Sciences, 22(9), 764779.CrossRefGoogle ScholarPubMed
Dennett, D. C. (1987). The Intentional Stance. MIT press.Google Scholar
Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Dima, D. C., Tomita, T. M., Honey, C. J., & Isik, L. (2022). Social-affective features drive human representations of observed actions. Elife, 11, 122.CrossRefGoogle ScholarPubMed
Dinstein, I., Hasson, U., Rubin, N., & Heeger, D. J. (2007). Brain areas selective for both observed and executed movements. Journal of Neurophysiology, 98(3), 14151427.CrossRefGoogle ScholarPubMed
Dinstein, I., Thomas, C., Behrmann, M., & Heeger, D. J. (2008). A mirror up to nature. Current Biology, 18(1), R13R18.CrossRefGoogle ScholarPubMed
Donnarumma, F., Costantini, M., Ambrosini, E., Friston, K., & Pezzulo, G. (2017). Action perception as hypothesis testing. Cortex, 89, 4560.CrossRefGoogle ScholarPubMed
Dungan, J. A., Stepanovic, M., & Young, L. (2016). Theory of mind for processing unexpected events across contexts. Social Cognitive and Affective Neuroscience, 11(8), 11831192.CrossRefGoogle ScholarPubMed
Edelman, S. (1998). Representation is representation of similarities. Behavioral and Brain Sciences, 21, 449498.CrossRefGoogle ScholarPubMed
Epstein, R. A., & Baker, C. I. (2019). Scene perception in the human brain. Annual Review of Vision Science, 5, 373397.CrossRefGoogle ScholarPubMed
Ernst, M. O. (2006). A Bayesian view on multimodal integration Cue. Human Body Perception from the Inside Out, 105131.Google Scholar
Estes, S. G. (1938). Judging personality from expressive behavior. The Journal of Abnormal and Social Psychology, 33(2), 217236.CrossRefGoogle Scholar
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 26082611.CrossRefGoogle ScholarPubMed
Ferrari, P. F., Bonini, L., & Fogassi, L. (2009). From monkey mirror neurons to primate behaviours: Possible ‘direct’ and ‘indirect’ pathways. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 23112323.CrossRefGoogle ScholarPubMed
Finisguerra, A., Amoruso, L., Makris, S., & Urgesi, C. (2018). Dissociated representations of deceptive intentions and kinematic adaptations in the observer’s motor system. Cerebral Cortex, 28(1), 3347.CrossRefGoogle ScholarPubMed
Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424(6950), 769771.CrossRefGoogle ScholarPubMed
Fleischer, F., Caggiano, V., Thier, P., & Giese, M. A. (2013). Physiologically inspired model for the visual recognition of transitive hand actions. Journal of Neuroscience, 33, 65636580.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., et al. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662667.CrossRefGoogle ScholarPubMed
Frith, C. D., & Done, D. J. (1988). Towards a neuropsychology of schizophrenia. The British Journal of Psychiatry, 153(4), 437443.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609.CrossRefGoogle ScholarPubMed
Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2001). Phase-specific modulation of cortical motor output during movement observation. Neuroreport, 12, 14891492.CrossRefGoogle ScholarPubMed
Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2004). Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements. European Journal of Neuroscience, 20(8), 21932202.CrossRefGoogle ScholarPubMed
Gärdenfors, P. (2004). Conceptual Spaces: The Geometry of Thought. MIT press.Google Scholar
Gardner, T., Aglinskas, A., & Cross, E. S. (2017). Using guitar learning to probe the action observation network’s response to visuomotor familiarity. NeuroImage, 156, 174189.CrossRefGoogle ScholarPubMed
Georgopoulos, A. P. (1990). Neurophysiology of reaching. In M. Jeannerod (Ed.), Attention and performance 13: Motor representation and control (pp. 227–263). Lawrence Erlbaum Associates, Inc.Google Scholar
Gibson, J. J. (1979/2014). The Ecological Approach to Visual Perception: Classic Edition. Psychology Press.CrossRefGoogle Scholar
Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179192.CrossRefGoogle ScholarPubMed
Gilbert, D. T., & Malone, P. S. (1995). The correspondence bias. Psychological Bulletin, 117(1), 2138.CrossRefGoogle ScholarPubMed
Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21, 618631.CrossRefGoogle ScholarPubMed
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 2025.CrossRefGoogle ScholarPubMed
Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography: 2. Observation compared with imagination. Experimental Brain Research, 112, 103111.CrossRefGoogle ScholarPubMed
Green, C., & Hummel, J. E. (2006). Familiar interacting object pairs are perceptually grouped. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 11071119.Google ScholarPubMed
Grill-Spector, K., & Malach, R. (2001). fMR-adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107(1–3), 293321.CrossRefGoogle ScholarPubMed
Güçlü, U., & van Gerven, M. A. J. (2015). Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. Journal of Neuroscience, 35, 1000510014.CrossRefGoogle ScholarPubMed
Hafri, A., & Firestone, C. (2021). The perception of relations. Trends in Cognitive Sciences, 25(6), 475492.CrossRefGoogle ScholarPubMed
Hafri, A., Trueswell, J. C., & Epstein, R. A. (2017). Neural representations of observed actions generalize across static and dynamic visual input. Journal of Neuroscience, 37(11), 30563071.CrossRefGoogle ScholarPubMed
Hamilton, A. F., & Grafton, S. T. (2007). The motor hierarchy: From kinematics to goals and intentions. Sensorimotor Foundations of Higher Cognition, 22, 381408.Google Scholar
Hamilton, A. F., & Grafton, S. T. (2008). Action outcomes are represented in human inferior frontoparietal cortex. Cerebral Cortex, 18(5), 11601168.CrossRefGoogle ScholarPubMed
Hamilton, A. F. D. C., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. Journal of Neuroscience, 26(4), 11331137.CrossRefGoogle ScholarPubMed
Hardwick, R. M., Caspers, S., Eickhoff, S. B., & Swinnen, S. P. (2018). Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neuroscience and Biobehavioral Reviews, 94, 3144.CrossRefGoogle ScholarPubMed
Hari, R. (2006). Action–perception connection and the cortical mu rhythm. Progress in Brain Research, 159, 253260.CrossRefGoogle ScholarPubMed
Harpaz, N. K., Flash, T., & Dinstein, I. (2014). Scale-invariant movement encoding in the human motor system. Neuron, 81(2), 452462.Google Scholar
Hemed, E., Mark-Tavger, I., Hertz, U., Bakbani-Elkayam, S., & Eitam, B. (2021). Automatically controlled: Task irrelevance fully cancels otherwise automatic imitation. Journal of Experimental Psychology: General, 9961017.Google Scholar
Heyes, C. (2001). Causes and consequences of imitation. Trends in Cognitive Sciences, 5(6), 253261.CrossRefGoogle ScholarPubMed
Heyes, C., & Catmur, C. (2022). What happened to mirror neurons? Perspectives on Psychological Science, 17(1), 153168.CrossRefGoogle ScholarPubMed
Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21(7), 12291243.CrossRefGoogle ScholarPubMed
Hobson, H. M., & Bishop, D. V. (2017). The interpretation of mu suppression as an index of mirror neuron activity: Past, present and future. Royal Society Open Science, 4(3), 122.CrossRefGoogle ScholarPubMed
Hutchinson, J. B., & Barrett, L. F. (2019). The power of predictions: An emerging paradigm for psychological research. Current Directions in Psychological Science, 28(3), 280291.CrossRefGoogle ScholarPubMed
Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60, 653670.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R. P., Brass, M., et al. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528.CrossRefGoogle ScholarPubMed
Jellema, T., Baker, C. I., Wicker, B., & Perrett, D. I. (2000). Neural representation for the perception of the intentionality of actions. Brain and Cognition, 44, 280302.CrossRefGoogle ScholarPubMed
Johnson, K. L., Gill, S., Reichman, V., & Tassinary, L. G. (2007). Swagger, sway, and sexuality: Judging sexual orientation from body motion and morphology. Journal of Personality and Social Psychology, 93(3), 321334.CrossRefGoogle ScholarPubMed
Jola, C., Abedian-Amiri, A., Kuppuswamy, A., Pollick, F. E., & Grosbras, M. H. (2012). Motor simulation without motor expertise: Enhanced corticospinal excitability in visually experienced dance spectators. PloS one, 7(3), 12.CrossRefGoogle ScholarPubMed
Kabulska, Z., & Lingnau, A. (2022). The cognitive structure underlying the organization of observed actions. Behavior Research Methods, 55, 18901906.CrossRefGoogle ScholarPubMed
Kaiser, D., Quek, G. L., Cichy, R. M., & Peelen, M. V. (2019). Object vision in a structured world. Trends in Cognitive Sciences, 23(8), 672685.CrossRefGoogle Scholar
Kalénine, S., Buxbaum, L. J., & Coslett, H. B. (2010). Critical brain regions for action recognition: Lesion symptom mapping in left hemisphere stroke. Brain, 133(11), 32693280.CrossRefGoogle ScholarPubMed
Kelly, S. W., Burton, A. M., Riedel, B., & Lynch, E. (2003). Sequence learning by action and observation: Evidence for separate mechanisms. British Journal of Psychology, 94(3), 355372.CrossRefGoogle ScholarPubMed
Kemmerer, D. (2021). What modulates the Mirror Neuron System during action observation? Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Progress in Biology, 205, 124.Google ScholarPubMed
Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences, 105(31), 1068710692.CrossRefGoogle ScholarPubMed
Kilner, J. M. (2011). More than one pathway to action understanding. Trends in Cognitive Sciences, 15(8), 352357.CrossRefGoogle ScholarPubMed
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8, 159166.CrossRefGoogle ScholarPubMed
Kilner, J. M., Kraskov, A., & Lemon, R. N. (2014). Do monkey F5 mirror neurons show changes in firing rate during repeated observation of natural actions? Journal of Neurophysiology, 111(6), 12141226.CrossRefGoogle ScholarPubMed
Kilner, J. M., & Lemon, R. N. (2013). What we know currently about mirror neurons. Current Biology, 23(23), R1057R1062.CrossRefGoogle ScholarPubMed
Kilner, J. M., Vargas, C., Duval, S., Blakemore, S. J., Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7(12), 12991301.CrossRefGoogle ScholarPubMed
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29(32), 1015310159.CrossRefGoogle ScholarPubMed
Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological Science, 12, 467472.CrossRefGoogle ScholarPubMed
Kohler, E., Keysers, C., Umilta, M. A., et al. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297(5582), 846848.CrossRefGoogle ScholarPubMed
Kozlowski, L. T., & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic point-light display. Perception & Psychophysics, 21, 575580.CrossRefGoogle Scholar
Kramer, R. S., Arend, I., & Ward, R. (2010). Perceived health from biological motion predicts voting behaviour. The Quarterly Journal of Experimental Psychology, 63(4), 625632.CrossRefGoogle ScholarPubMed
Kraskov, A., Dancause, N., Quallo, M. M., Shepert, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: A potential mechanism for action suppression? Neuron, 64, 922930.CrossRefGoogle ScholarPubMed
Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 17(1), 2649.CrossRefGoogle ScholarPubMed
Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: Integrating cognition, computation, and the brain. Trends in Cognitive Sciences, 17(8), 401412.CrossRefGoogle ScholarPubMed
Kriegeskorte, N., & Mur, M. (2012). Inverse MDS: Inferring dissimilarity structure from multiple item arrangements. Frontiers in Psychology, 3, 113.CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences, 103(10), 38633868.CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Mur, M., & Bandettini, P. (2008a). Representational similarity analysis – connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 128.Google ScholarPubMed
Kriegeskorte, N., Mur, M., Ruff, D. A., et al. (2008b). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 11261141.CrossRefGoogle ScholarPubMed
Kroczek, L. O., Lingnau, A., Schwind, V., Wolff, C., & Mühlberger, A. (2021). Angry facial expressions bias towards aversive actions. Plos one, 16(9), 113.CrossRefGoogle ScholarPubMed
Lanzilotto, M., Maranesi, M., Livi, A., et al. (2020). Stable readout of observed actions from format-dependent activity of monkey’s anterior intraparietal neurons. Proceedings of the National Academy of Sciences, 117(28), 1659616605.CrossRefGoogle ScholarPubMed
Lavie, N., & Dalton, P. (2014). Load theory of attention and cognitive control. The Oxford Handbook of Attention, 5675.Google Scholar
Levin, B. (1993). English Verb Classes and Alternations. Chicago: The University of Chicago Press.Google Scholar
Lingnau, A., & Downing, P. E. (2015). The lateral occipitotemporal cortex in action. Trends in Cognitive Sciences, 19(5), 268277.CrossRefGoogle ScholarPubMed
Lingnau, A., & Petris, S. (2013). Action understanding inside and outside the motor system: The role of task difficulty. Cerebral Cortex, 23(6), 13421350. https://doi.org/10.1093/cercor/bhs112.CrossRefGoogle Scholar
Lingnau, A., Gesierich, B., & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences, 106(24), 99259930.CrossRefGoogle ScholarPubMed
Liu, S., Brooks, N. B., & Spelke, E. S. (2019). Origins of the concepts cause, cost, and goal in prereaching infants. Proceedings of the National Academy of Sciences, 116(36), 1774717752.CrossRefGoogle ScholarPubMed
Livi, A., Lanzilotto, M., Maranesi, M., et al. (2019). Agent-based representations of objects and actions in the monkey pre-supplementary motor area. Proceedings of the National Academy of Sciences, 116(7), 26912700.CrossRefGoogle ScholarPubMed
Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 210220.Google ScholarPubMed
Maeda, F., Kleiner-Fisman, G., & Pascual-Leone, A. (2002). Motor facilitation while observing hand actions: Specificity of the effect and role of observer’s orientation. Journal of Neurophysiology, 87(3), 13291335.CrossRefGoogle ScholarPubMed
Majdandžić, J., Bekkering, H., van Schie, H. T., & Toni, I. (2009). Movement-specific repetition suppression in ventral and dorsal premotor cortex during action observation. Cerebral Cortex, 19(11), 27362745.CrossRefGoogle ScholarPubMed
Maranesi, M., Livi, A., & Bonini, L. (2017). Spatial and viewpoint selectivity for others’ observed actions in monkey ventral premotor mirror neurons. Scientific Reports, 7(1), 17.CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision. W.H. Freeman.Google Scholar
Mattar, A. A., & Gribble, P. L. (2005). Motor learning by observing. Neuron, 46(1), 153160.CrossRefGoogle ScholarPubMed
McDonough, K. L., Hudson, M., & Bach, P. (2019). Cues to intention bias action perception toward the most efficient trajectory. Scientific Reports, 9(1), 110.CrossRefGoogle ScholarPubMed
McMahon, E., & Isik, L. (2023). Seeing social interactions. Trends in Cognitive Science, 27(12), 11651179.CrossRefGoogle ScholarPubMed
Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 7578.CrossRefGoogle ScholarPubMed
Milner, A. D., & Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press.Google Scholar
Minsky, M. (1975). Minsky’s Frame System Theory. Proceedings of the 1975 workshop on theoretical issues in natural language processing, pages 104116.Google Scholar
Morris, M. W., & Murphy, G. L. (1990). Converging operations on a basic level in event taxonomies. Memory & Cognition, 18(4), 407418.CrossRefGoogle ScholarPubMed
Muhammad, K., Ullah, A., Imran, A. S., et al. (2021). Human action recognition using attention based LSTM network with dilated CNN features. Future Generation Computer Systems, 125, 820830.CrossRefGoogle Scholar
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20(8), 750756.CrossRefGoogle ScholarPubMed
Muthukumaraswamy, S. D., & Johnson, B. W. (2004a). Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology, 41(1), 152156.CrossRefGoogle ScholarPubMed
Muthukumaraswamy, S. D., Johnson, B. W., & McNair, N. A. (2004b). Mu rhythm modulation during observation of an object-directed grasp. Cognitive Brain Research, 19(2), 195201.CrossRefGoogle ScholarPubMed
Murata, A., Fadiga, L., Fogassi, L., et al. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of Neurophysiology, 78(4), 22262230.CrossRefGoogle ScholarPubMed
Murty, N. A. R., Bashivan, P., Abate, A., DiCarlo, J. J., & Kanwisher, N. (2021). Computational models of category-selective brain regions enable high-throughput tests of selectivity. Nature Communications, 12, 114.Google Scholar
Nastase, S. A., Connolly, A. C., Oosterhof, N. N., et al. (2017). Attention selectively reshapes the geometry of distributed semantic representation. Cerebral Cortex, 27(8), 42774291.CrossRefGoogle ScholarPubMed
Netanyahu, A., Shu, T., Katz, B., Barbu, A., & Tenenbaum, J. B. (2021). Phase: Physically-grounded abstract social events for machine social perception. In Proceedings of the aaai Conference on Artificial Intelligence, 35(1), 845853.CrossRefGoogle Scholar
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424430.CrossRefGoogle ScholarPubMed
Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization relationship. Journal of Experimental Psychology: General, 115(1), 3957.CrossRefGoogle ScholarPubMed
Oliva, A., & Torralba, A. (2007). The role of context in object recognition. Trends in Cognitive Sciences, 11(12), 520527.CrossRefGoogle ScholarPubMed
Oostenbroek, J., Suddendorf, T., Nielsen, M., et al. (2016). Comprehensive longitudinal study challenges the existence of neonatal imitation in humans. Current Biology, 26, 13341338.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Wiggett, A. J., Diedrichsen, J., Tipper, S. P., & Downing, P. E. (2010). Surface-based information mapping reveals crossmodal vision–action representations in human parietal and occipitotemporal cortex. Journal of Neurophysiology, 104(2), 10771089.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Tipper, S. P., & Downing, P. E. (2012a). Viewpoint (in) dependence of action representations: An MVPA study. Journal of Cognitive Neuroscience, 24(4), 975989.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Tipper, S. P., & Downing, P. E. (2012b). Visuo-motor imagery of specific manual actions: A multi-variate pattern analysis fMRI study. Neuroimage, 63(1), 262271.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Tipper, S. P., & Downing, P. E. (2013). Crossmodal and action-specific: Neuroimaging the human mirror neuron system. Trends in Cognitive Sciences, 17(7), 311318.CrossRefGoogle ScholarPubMed
Orban, G. A., Ferri, S., & Platonov, A. (2019). The role of putative human anterior intraparietal sulcus area in observed manipulative action discrimination. Brain and Behavior, 9, 113.CrossRefGoogle ScholarPubMed
Orban, G. A., Lanzilotto, M., & Bonini, L. (2021). From observed action identity to social affordances. Trends in Cognitive Sciences, 25(6), 493505.CrossRefGoogle ScholarPubMed
Orgs, G., Hagura, N., & Haggard, P. (2013). Learning to like it: Aesthetic perception of bodies, movements and choreographic structure. Consciousness and Cognition, 22(2), 603612.CrossRefGoogle ScholarPubMed
Osiurak, F., & Badets, A. (2016). Tool use and affordance: Manipulation-based versus reasoning-based approaches. Psychological Review, 123(5), 534568.CrossRefGoogle ScholarPubMed
Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters. Cognitive Brain Research, 22, 129151.CrossRefGoogle ScholarPubMed
Oztop, E., Kawato, M., & Arbib, M. A. (2013). Mirror neurons: Functions, mechanisms, and models. Neuroscience Letters, 540, 4355.CrossRefGoogle ScholarPubMed
Papeo, L. (2020). Twos in human visual perception. Cortex, 132, 473478.CrossRefGoogle ScholarPubMed
Papeo, L., Agostini, B., & Lingnau, A. (2019). The large-scale organization of gestures and words in the middle temporal gyrus. Journal of Neuroscience, 39(30), 59665974.CrossRefGoogle ScholarPubMed
Peelen, M. V., & Downing, P. E. (2007). Using multi-voxel pattern analysis of fMRI data to interpret overlapping functional activations. Trends in Cognitive Sciences, 11(1), 4–4.CrossRefGoogle ScholarPubMed
Peelen, M. V., & Kastner, S. (2014). Attention in the real world: Toward understanding its neural basis. Trends in Cognitive Sciences, 18(5), 242250.CrossRefGoogle ScholarPubMed
Perrett, D. I., Harries, M. H., Bevan, R., et al. (1989). Frameworks of analysis for the neural representation of animate objects and actions. Journal of Experimental Biology, 146(1), 87113.CrossRefGoogle ScholarPubMed
Petrini, K., Pollick, F. E., Dahl, S., et al. (2011). Action expertise reduces brain activity for audiovisual matching actions: An fMRI study with expert drummers. Neuroimage, 56(3), 14801492.CrossRefGoogle ScholarPubMed
Pinker, S. L. (1989). Cognition: The Acquisition of Argument Structure. MIT Press.Google Scholar
Pitcher, D., & Ungerleider, L. G. (2021). Evidence for a third visual pathway specialized for social perception. Trends in Cognitive Sciences, 25(2), 100110.CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2), 5963.CrossRefGoogle ScholarPubMed
Press, C., Weiskopf, N., & Kilner, J. M. (2012). Dissociable roles of human inferior frontal gyrus during action execution and observation. Neuroimage, 60(3), 16711677.CrossRefGoogle ScholarPubMed
Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129154.CrossRefGoogle Scholar
Quadflieg, S., & Westmoreland, K. (2019). Making sense of other people’s encounters: Towards an integrative model of relational impression formation. Journal of Nonverbal Behavior, 43, 233256.CrossRefGoogle Scholar
Ramsey, R., Darda, K. M., & Downing, P. E. (2019). Automatic imitation remains unaffected under cognitive load. Journal of Experimental Psychology: Human Perception and Performance, 45(5), 601615.Google ScholarPubMed
Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 7987.CrossRefGoogle ScholarPubMed
Reddy, V., & Uithol, S. (2016). Engagement: Looking beyond the mirror to understand action understanding. British Journal of Developmental Psychology, 34, 101114.CrossRefGoogle ScholarPubMed
Repp, B. H., & Knoblich, G. (2004). Perceiving action identity: How pianists recognize their own performances. Psychological Science, 15(9), 604609.CrossRefGoogle ScholarPubMed
Rifkin, A. (1985). Evidence for a basic level in event taxonomies. Memory & Cognition, 13(6), 538556.CrossRefGoogle ScholarPubMed
Riley, M. R., & Constantinidis, C. (2016). Role of prefrontal persistent activity in working memory. Frontiers in Systems Neuroscience, 9, 114.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Fogassi, L. (2014). The mirror mechanism: Recent findings and perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1644), 112.CrossRefGoogle Scholar
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264274.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2016). The mirror mechanism: A basic principle of brain function. Nature Reviews Neuroscience, 17(12), 757765.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Scandolara, C., Gentilucci, M., & Camarda, R. (1981). Response properties and behavioral modulation of ‘mouth’ neurons of the postarcuate cortex (area 6) in macaque monkeys. Brain Research, 225(2), 421424.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Camarda, R., Fogassi, L., et al. (1988). Functional organization of inferior area 6 in the macaque monkey: II. Area F5 and the control of distal movements. Experimental Brain Research, 71, 491507.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Matelli, M., et al. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111, 246252.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661670.CrossRefGoogle ScholarPubMed
Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8(3), 382439.CrossRefGoogle Scholar
Ross, L. (2018). From the fundamental attribution error to the truly fundamental attribution error and beyond: My research journey. Perspectives on Psychological Science, 13(6), 750769.CrossRefGoogle Scholar
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: The role of the temporo-parietal junction in ‘theory of mind’. Neuroimage, 19(4), 18351842.CrossRefGoogle ScholarPubMed
Schank, R. C., & Abelson, R. P. (1977). Scripts, Plans, Goals, and Understanding: An Inquiry into Human Knowledge Structures. Psychology press.Google Scholar
Schultz, J., & Frith, C. D. (2022). Animacy and the prediction of behaviour. Neuroscience & Biobehavioral Reviews, 140, 111.CrossRefGoogle ScholarPubMed
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 934.CrossRefGoogle ScholarPubMed
Sebanz, N., & Knoblich, G. (2021). Progress in joint-action research. Current Directions in Psychological Science, 30(2), 138143.CrossRefGoogle Scholar
Seeliger, K., Ambrogioni, L., Güçlütürk, Y., et al. (2021). End-to-end neural system identification with neural information flow. PLoS Computational Biology, 17(2), 122.CrossRefGoogle ScholarPubMed
Seger, C. A. (1997). Two forms of sequential implicit learning. Consciousness and Cognition, 6(1), 108131.CrossRefGoogle ScholarPubMed
Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X., & Yantis, S. (2004). Control of object-based attention in human cortex. Cerebral Cortex, 14(12), 13461357.CrossRefGoogle ScholarPubMed
Shahdloo, M., Çelik, E., Urgen, B. A., Gallant, J. L., & Çukur, T. (2022). Task-dependent warping of semantic representations during search for visual action categories. Journal of Neuroscience, 42(35), 67826799.CrossRefGoogle ScholarPubMed
Shepard, R. N. (1958). Stimulus and response generalization: Tests of a model relating generalization to distance in psychological space. Journal of Experimental Psychology, 55(6), 509523.CrossRefGoogle Scholar
Singer, J. M., & Sheinberg, D. L. (2010). Temporal cortex neurons encode articulated actions as slow sequences of integrated poses. Journal of Neuroscience, 30(8), 31333145.CrossRefGoogle ScholarPubMed
Sliwa, J., & Freiwald, W. A. (2017). A dedicated network for social interaction processing in the primate brain. Science, 356, 745749.CrossRefGoogle Scholar
Southgate, V. (2013). Do infants provide evidence that the mirror system is involved in action understanding? Consciousness and Cognition, 22(3), 11141121.CrossRefGoogle ScholarPubMed
Spoerer, C. J., McClure, P., & Kriegeskorte, N. (2017). Recurrent convolutional neural networks: A better model of biological object recognition. Frontiers in Psychology, 8, 114.CrossRefGoogle ScholarPubMed
Spunt, R. P., & Lieberman, M. D. (2013). The busy social brain: Evidence for automaticity and control in the neural systems supporting social cognition and action understanding. Psychological Science, 24(1), 8086.CrossRefGoogle ScholarPubMed
Spunt, R. P., & Lieberman, M. D. (2014). Automaticity, control, and the social brain. In J. W. Sherman, B. Gawronski, & Y. Trope (Eds.), Dual-process theories of the social mind (pp. 279298). New York, NY: Guilford Press.Google Scholar
Spunt, R. P., Satpute, A. B., & Lieberman, M. D. (2011). Identifying the what, why, and how of an observed action: An fMRI study of mentalizing and mechanizing during action observation. Journal of Cognitive Neuroscience, 23(1), 6374.CrossRefGoogle ScholarPubMed
Spunt, R. P., Kemmerer, D., & Adolphs, R. (2016). The neural basis of conceptualizing the same action at different levels of abstraction. Social Cognitive and Affective Neuroscience, 11(7), 11411151.CrossRefGoogle ScholarPubMed
Stangl, M., Maoz, S. L., & Suthana, N. (2023). Mobile cognition: Imaging the brain in the ‘real world’. Nature Reviews Neuroscience, 24, 347362.CrossRefGoogle ScholarPubMed
Strafella, A. P., & Paus, T. (2000). Modulation of cortical excitability during action observation: A transcranial magnetic stimulation study. Neuroreport, 11(10), 22892292.CrossRefGoogle ScholarPubMed
Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M. M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11(9), 10041006.CrossRefGoogle ScholarPubMed
Talmy, L. (1985). Lexicalization patterns: Semantic structure in lexical forms. Language Typology and Syntactic Description, 3(99), 36149.Google Scholar
Tamir, D. I., & Thornton, M. A. (2018). Modeling the predictive social mind. Trends in Cognitive Sciences, 22(3), 201212.CrossRefGoogle ScholarPubMed
Tanaka, K. (1997). Mechanisms of visual object recognition: Monkey and human studies. Current Opinion in Neurobiology, 7, 523529.CrossRefGoogle ScholarPubMed
Tarhan, L., & Konkle, T. (2020). Sociality and interaction envelope organize visual action representations. Nature Communications, 11(1), 111.CrossRefGoogle ScholarPubMed
Tarhan, L., de Freitas, J., & Konkle, T. (2021). Behavioral and neural representations en route to intuitive action understanding. Neuropsychologia, 163, 110.CrossRefGoogle ScholarPubMed
Thompson, E. L., Bird, G., & Catmur, C. (2019). Conceptualizing and testing action understanding. Neuroscience & Biobehavioral Reviews, 105, 106114.CrossRefGoogle ScholarPubMed
Thompson, E. L., Long, E. L., Bird, G., & Catmur, C. (2023). Is action understanding an automatic process? Both cognitive and perceptual processing are required for the identification of actions and intentions. Quarterly Journal of Experimental Psychology, 76(1), 7083.CrossRefGoogle ScholarPubMed
Thompson, J., & Parasuraman, R. (2012). Attention, biological motion, and action recognition. Neuroimage, 59(1), 413.CrossRefGoogle ScholarPubMed
Thornton, M. A., & Tamir, D. I. (2021a). People accurately predict the transition probabilities between actions. Science Advances, 7, 112. https://doi.org/10.1126/sciadv.abd4995.CrossRefGoogle ScholarPubMed
Thornton, M. A., & Tamir, D. I. (2021b). Perceiving actions before they happen: Psychological dimensions scaffold neural action prediction. Social Cognitive and Affective Neuroscience, 16(8), 807815.CrossRefGoogle ScholarPubMed
Thornton, M. A., & Tamir, D. I. (2022). Six dimensions describe action understanding: The ACT-FASTaxonomy. Journal of Personality and Social Psychology, 122(4), 577605.CrossRefGoogle ScholarPubMed
Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16(3), 495511.CrossRefGoogle Scholar
Troje, N. F., & Basbaum, A. (2008). Biological motion perception. The Senses: A Comprehensive Reference, 2, 231238.Google Scholar
Tucciarelli, R., Wurm, M., Baccolo, E., & Lingnau, A. (2019). The representational space of observed actions. elife, 8, 124.CrossRefGoogle ScholarPubMed
Turella, L., Pierno, A. C., Tubaldi, F., & Castiello, U. (2009). Mirror neurons in humans: Consisting or confounding evidence? Brain and Language, 108(1), 1021.CrossRefGoogle ScholarPubMed
Turella, L., Wurm, M. F., Tucciarelli, R., & Lingnau, A. (2013). Expertise in action observation: Recent neuroimaging findings and future perspectives. Frontiers in Human Neuroscience, 7, 15. https://doi.org/10.3389/fnhum.2013.00637.CrossRefGoogle ScholarPubMed
Turella, L., Rumiati, R., & Lingnau, A. (2020). Hierarchical action encoding within the human brain. Cerebral Cortex, 30(5), 29242938. https://doi.org/10.1093/cercor/bhz284.CrossRefGoogle ScholarPubMed
Uithol, S., van Rooij, I., Bekkering, H., & Haselager, P. (2012). Hierarchies in action and motor control. Journal of Cognitive Neuroscience, 24(5), 10771086.CrossRefGoogle ScholarPubMed
Umiltà, M. A., Kohler, E., Gallese, V., et al. (2001). I know what you are doing: A neurophysiological study. Neuron, 19, 155165.CrossRefGoogle Scholar
Umiltà, M. A., Escola, L., Intskirveli, I., et al. (2008). When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences, 105(6), 22092213.CrossRefGoogle ScholarPubMed
Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behavior. Edited by Ingle, D. J., Goodale, M. A., & Mansfield, R. J. W., 549586. MIT Press.Google Scholar
Valentine, T., Lewis, M. B., & Hills, P. J. (2016). Face-space: A unifying concept in face recognition research. Quarterly Journal of Experimental Psychology, 69(10), 19962019.CrossRefGoogle ScholarPubMed
Vallacher, R. R., & Wegner, D. M. (1989). Levels of personal agency: Individual variation in action identification. Journal of Personality and Social Psychology, 57, 660671.CrossRefGoogle Scholar
Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829858.CrossRefGoogle ScholarPubMed
Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage, 48(3), 564584.CrossRefGoogle ScholarPubMed
Vannuscorps, G., & Caramazza, A. (2016). Typical action perception and interpretation without motor simulation. Proceedings of the National Academy of Sciences, 113(1), 8691.CrossRefGoogle ScholarPubMed
Vannuscorps, G., & Caramazza, A. (2023). Effector-specific motor simulation supplements core action recognition processes in adverse conditions. Social Cognitive and Affective Neuroscience, 18(1), 111.CrossRefGoogle ScholarPubMed
Vinson, D. P., & Vigliocco, G. (2008). Semantic feature production norms for a large set of objects and events. Behavior Research Methods, 40(1), 183190.CrossRefGoogle ScholarPubMed
Vrigkas, M., Nikou, C., & Kakadiaris, I. A. (2015). A review of human activity recognition methods. Frontiers in Robotics and AI, 2, 128.CrossRefGoogle Scholar
Watson, C. E., & Buxbaum, L. J. (2014). Uncovering the architecture of action semantics. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 18321848.Google ScholarPubMed
Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460473.CrossRefGoogle ScholarPubMed
Wurm, M. F., & Caramazza, A. (2019). Distinct roles of temporal and frontoparietal cortex in representing actions across vision and language. Nature Communications, 10(1), 289.CrossRefGoogle ScholarPubMed
Wurm, M. F., & Caramazza, A. (2022). Two ‘what’ pathways for action and object recognition. Trends in Cognitive Sciences, 26(2), 103116.CrossRefGoogle ScholarPubMed
Wurm, M. F., & Lingnau, A. (2015). Decoding actions at different levels of abstraction. Journal of Neuroscience, 35, 77277735.CrossRefGoogle ScholarPubMed
Wurm, M. F., & Schubotz, R. I. (2012). Squeezing lemons in the bathroom: Contextual information modulates action recognition. Neuroimage, 59, 15511559.CrossRefGoogle ScholarPubMed
Wurm, M. F., & Schubotz, R. I. (2017). What’s she doing in the kitchen? Context helps when actions are hard to recognize. Psychonomic Bulletin & Review, 24, 503509.CrossRefGoogle ScholarPubMed
Wurm, M. F., Ariani, G., Greenlee, M., & Lingnau, A. (2015). Decoding concrete and abstract action representations during explicit and implicit conceptual processing. Cerebral Cortex, 26(8), 33903401. https://doi.org/10.1093/cercor/bhv169.CrossRefGoogle ScholarPubMed
Wurm, M. F., Artemenko, C., Giuliani, D., & Schubotz, R. I. (2017a). Action at its place: Contextual settings enhance action recognition in 4- to 8-year-old children. Developmental Psychology, 53(4), 662670.CrossRefGoogle ScholarPubMed
Wurm, M. F., Caramazza, A., & Lingnau, A. (2017b). Action categories in lateral occipitotemporal cortex are organized along sociality and transitivity. Journal of Neuroscience, 37, 562575.CrossRefGoogle ScholarPubMed
Yau, J. M., Pasupathy, A., Brincat, S. L., & Connor, C. E. (2013). Curvature processing dynamics in macaque area V4. Cerebral Cortex, 23, 198209.CrossRefGoogle ScholarPubMed
Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: A mind/brain perspective. Psychological Bulletin, 133(2), 273293.CrossRefGoogle ScholarPubMed
Zhuang, T., & Lingnau, A. (2022). The characterization of actions at the superordinate, basic and subordinate level. Psychological Research, 86(6), 18711891.CrossRefGoogle ScholarPubMed
Zhuang, T., Kabulska, Z., & Lingnau, A. (2023). The representation of observed actions at the subordinate, basic and superordinate level. Journal of Neuroscience, 43(48), 82198230.CrossRefGoogle ScholarPubMed

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Action Understanding
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Action Understanding
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Action Understanding
Available formats
×