Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-30T01:44:05.573Z Has data issue: false hasContentIssue false

Set-maintenance and set-shifting problems in schizophrenic subtypes: relationship to dysfunctions of the fronto-striatal loops

Published online by Cambridge University Press:  18 September 2015

M.G. Lanser
Affiliation:
Afdeling Psychoneurofarmacologie, Katholieke Universiteit Nijmegen Afdeling Psychiatrie, St. Radboud Ziekenhuis, Nijmegen
B.A. Ellenbroek
Affiliation:
Afdeling Psychoneurofarmacologie, Katholieke Universiteit Nijmegen
A.R. Cools
Affiliation:
Afdeling Psychoneurofarmacologie, Katholieke Universiteit Nijmegen
F.G. Zitman
Affiliation:
Afdeling Psychiatrie, St. Radboud Ziekenhuis, Nijmegen

Summary

Research with patients suffering from Parkinson's disease and frontal lobe lesions has shown that disturbances in the fronto-striatal loops in the brain can cause perseveration. Perseveration is a core symptom of schizophrenia, yet the cause is not known. For schizophrenic patients disorders of many parts of the fronto-striatal loops are found, for example disturbances of the prefrontal cortex and the striatum. Perseveration in schizophrenia can be explained with set-maintenance problems, related to dysfunction of the prefrontal cortex, or with set-shifting problems that are related to disorders in the striatum. These set-maintenance and set-shifting problems can be distinguished with neuropsychological tests. Regarding the bloodflow patterns for the different subtypes of schizophrenia three problems are expected as explanations for perseveration: set-maintenance problems concerning abstract information, set-maintenance problems shifting between stimuli and enhanced set-shifting with cues.

Type
Articles
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

1.Bleuler, E. Lehrbuch der psychiatric. Berlin, Julius Springer, 1918.CrossRefGoogle Scholar
2.Heaton, RK, Chelune, GJ, Talley, JL, et al.Wisconsin Card Sorting Test Manual. Odessa (FL), Psychological Assessment Resources, 1993.Google Scholar
3.Milner, B. Effects of different brain lesions on card sorting. Arch Neurol 1963;9:90100.CrossRefGoogle Scholar
4.Spaendonck, KPM van, Berger, HJC, Horstink, MWIM, et al.Card sorting performance in Parkinson's disease: a comparison between acquisition and shifting performance. J Clin Exp Neuropsychol 1995;17:918925.CrossRefGoogle ScholarPubMed
5.Lawrence, AD, Sahakian, BJ, Robbins, TW. Cognitive functions and corticostriatal circuits: insights form Huntington's disease. Trends Cogn Sci 1998;10:379388.CrossRefGoogle Scholar
6.Lanser, MG, Ellenbroek, BA, Cools, ARet al.Perseveration in schizofrenie patients: a neuropsychological approach for research. Acta Neuropsychiatrica 2000;1:2731.CrossRefGoogle Scholar
7.Alexander, GE, DeLong, MR, Strick, PL. Parallel organisation of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986;9:357381.CrossRefGoogle ScholarPubMed
8.Cools, AR, Bercken, JHL, Horstink, MWI, et al.Cognitive and motor shifting aptitude disorder in Parkinson's disease. J Neurol Neurosurg Psychiatry 1984;47:443453.CrossRefGoogle ScholarPubMed
9.Owen, AM, James, M, Leigh, PN, et al.Frontostriatal cognitive deficits at different stages of Parkinson's disease. Brain 1992;115:17271751.CrossRefGoogle ScholarPubMed
10.Bäckman, L, Robins-Wahlin, T-B, et al.Cognitive deficits in Huntington's disease are predicted by dopaminergic PET markers and brain volumes. Brain 1997;120:22072217.CrossRefGoogle ScholarPubMed
11.Schmidtke, K, Schorb, A, et al.Cognitive frontal lobe dysfunction in obsessive-compulsive disorder. Biol Psychiatry 1998;43:666673.CrossRefGoogle ScholarPubMed
12.Parent, A, Hazrati, L-N. Functional anatomy of the basal ganglia. I The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 1995;20:91127.CrossRefGoogle ScholarPubMed
13.Swerdlow, NR, Koob, GF. Dopamine, schizophrenia, mania, and depression: Toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behav Brain Sciences 1987;10:197245.CrossRefGoogle Scholar
14.Pantelis, C, Brewer, WNeurocognitive and neurobehavioural patterns and the syndromes of schizophrenia: role of frontal-subcortical networks. In: Pantelis, C, Nelson, HE, Barnes, TRE, eds. Schizophrenia: a Neuropsychological Perspective. Chicester, John Wiley & Sons, 1996.Google Scholar
15.Weinberger, DR, Berman, KF, Zee, RF. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 1986;43 114124.CrossRefGoogle ScholarPubMed
16.Freedman, M, Black, S, et al.Orbitofrontal function, object alternation and perseveration. Cereb Cortex 1998;8:1827.CrossRefGoogle ScholarPubMed
17.Dias, R, Robbins, TW, Roberts, AC. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 1996;380:6972.CrossRefGoogle ScholarPubMed
18.Fuster, JM. The prefrontal cortex. New York, Raven Press, 1980.Google Scholar
19.Ridley, RM, Clark, BA, Durnford I_J et al.Stimulus-bound perseveration after frontal ablations in marmosets. Neuroscience 1993;52:595604.CrossRefGoogle ScholarPubMed
20.Roberts, AC, Robbins, TW, Everitt, BJ, et al.A specific form of cognitive rigidity following excitotoxic lesions of the basal forebrain in marmosets. Neuroscience 1992;47:251264.CrossRefGoogle ScholarPubMed
21.Goldman-Rakic, PS. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci 1996;351:14451453.Google ScholarPubMed
22.Joel, D, Weiner, I, Feldon, J. Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia. Behav Brain Res 1997;85:187201.CrossRefGoogle Scholar
23.Delatour, B, Gisquet-Verrier, RPrelimbic cortex leions disrupt de-layed-variable response tasks in the rat. Beh Neurosci 1996;110:12821298.CrossRefGoogle Scholar
24.DeBruin, JP, Sanchez-Santed, F, Heinsbroek, RPet al.A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for diminished behavioural flexibility, but not for impaired spatial navigation. Brain Res 1994;652:323333.CrossRefGoogle Scholar
25.Lhermitte, F. ‘Utilization behaviour’ and its relation to lesions of the frontal lobes. Brain 1983;106:237255.CrossRefGoogle ScholarPubMed
26.Rolls, ET. The orbitofrontal cortex. Philos Trans R Soc Lond B Biol Sci 1996;351:14451453.Google ScholarPubMed
27.Meunier, M, Bachevalier, J, Mishkin, M. Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia 1997;35:9991015.CrossRefGoogle ScholarPubMed
28.Abbruzzese, M, Ferri, S, Scarone, S. The selective breakdown of frontal functions in patients with obsessive-compulsive disorder and in patients with schizophrenia: A double dissociation experimental finding. Neuropsychologia 1997;6:907912.CrossRefGoogle Scholar
29.Shallice, T. The allocation of processing resources: higher-level control. In: Shallice, T, ed. From Neuropsychology to Mental Structure. Cambridge, University Press, 1988.CrossRefGoogle Scholar
30.Corwin, JV, Fussinger, M, Meyer, RC, King, VR, Reep, RL. Bilateral destruction of the ventrolateral orbital cortex produces allocentric but not egocentric spatial deficits in rats. Behav Brain Res 1994;61:7986.CrossRefGoogle Scholar
31.Nutt, JG, Hammerstad, JP, Gancher, ST. Parkinson's disease. St. Louis, Mosby Year Book, 1992.Google Scholar
32.Cools AR Role of the neostriatal dopaminergic activity in sequencing and selecting behavioural strategies: facilitation of processes involved in selecting the best strategy in a stressful situation. Behav Brain Res 1980;1:361378.CrossRefGoogle Scholar
33.Bos, R van den, Cools, AR. The involvement of the nucleus accumbens in the ability of rats to switch to cue-directed behaviours. Life Sci 1989;44:16971704.Google ScholarPubMed
34.Bos, R van den, Charria Ortiz, GA, Cools, AR. Injections of the NMDA-antagonist D-2-amino-7-phosphonoheptanoic acid (AP-7) into the nucleus accumbens of rats enhance switching between cue-directed behaviours in a swimming test procedure. Behav Brain Res 1992;48:165170.Google Scholar
35.Taghzouti, K, Simon, H, Louilot, Aet al.Behavioral study after local injection of 6-hydroxydopamine into the nucleus accumbens in the rat. Brain Res 1985;344:920.CrossRefGoogle ScholarPubMed
36.Andreasen, NC, O'Leary, DSet al.Hypofrontality in schizophrenia: distributed dysfunctional circuits in neurolepticnaive patients. Lancet 1997;349:17301734.CrossRefGoogle ScholarPubMed
37.Yurgelun-Todd, DA, Waternaux, CM, Cohen, BM, et al.Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production. Am J Psychiatry 1996;153:200205.Google ScholarPubMed
38.Weinberger, DR, Berman, KF. Speculation on the meaning of cerebral metabolic hypofrontality in schizophrenia. Schizophr Bull 1988;14:157168.CrossRefGoogle ScholarPubMed
39.Taylor, DG. Advances in the neuropathology of schizophrenia. In: Boer, JA den, Westenberg, HGM, Praag, HM van, eds. Advances in the Neurobiology of Schizophrenia. Chicester, John Wiley and Sons, 1995.Google Scholar
40.Seidman, LJ, Talbot, NL, et al.Neuropsychological probes of frontolimbic system dysfunction in schizophrenia. Olfactory identification and Wisconsin Card Sorting performance. Schizophr Res 1992;6:5565.CrossRefGoogle Scholar
41.Meador-Woodruff, JH, Haroutunian, V, Powchik, P, et al.Dopamine receptor transcript expression in striatum and prefrontal and occipital cortex. Focal abnormalities in orbitofrontal cortex in schizophrenia. Arch Gen Psychiatry 1997;54:10891095.CrossRefGoogle ScholarPubMed
42.Seidman, LJ, Oscar-Berman, M, Kalinowski, AG, et al.Experimental and clinical neuropscyhological measures of prefrontal dysfunction in schizophrenia. Neuropsychology 1995;9:481490.CrossRefGoogle Scholar
43.Pakkenberg, B. Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 1990;47:10231028.CrossRefGoogle ScholarPubMed
44.Hokama, H, Shenton, ME, Nestor, PGet al.Caudate, putamen, and globus pallidus volume in schizophrenia: a quantitative MRI study. Psychiatry Res 1995;61:209229.CrossRefGoogle ScholarPubMed
45.Stratta, P, Mancini, F, et al.Association between striatal reduction and poor Wisconsin Card Sorting Test performance in patients with schizophrenia. Biol Psychiatry 1997;42:816820.CrossRefGoogle ScholarPubMed
46.Siegel, BV, Buchsbaum, MS, Bunney, WEet al.Cortical-striatal-thalamic circuits and brain glucose metabolic activity in 70 unmedicated male and schizophrenic patients. Am J Psychiatry 1993;150:13251336.Google ScholarPubMed
47.Katz, M, Buchsbaum, MS, Siegel, BV jr., et al.Correlational patterns of cerebral glucose metabolism in never-medicated schizophrenics. Neuropsychobiology 1996;33:111.CrossRefGoogle ScholarPubMed
48.Buchsbaum, MS, Haier, RJ, Potkin, SGet al.Frontostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Arch Gen Psychiatry 1992;49:935942.CrossRefGoogle ScholarPubMed
49.Jaskiw, GE, Weinberger, DR. The prefrontal cortex - accumbens circuit: Who's in charge? Comment on: Swerdlow NR, Koob GF. Dopamine, schizophrenia, mania, and depression: Toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behav Brain Sciences 1987;10:197245.Google Scholar
50.Weinberger, DR, Berman, KF, Illinowsky, MD. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia III A new cohort and evidence for a monoaminergic mechanism. Arch Gen Psychiatry 1988;45:609615.CrossRefGoogle Scholar
51.Crow, TJ. Two syndromes in schizophrenia? Trends Neurosci 1982;5:36.CrossRefGoogle Scholar
52.Liddle, PF, Morris, DL. Schizophrenic syndromes and frontal lobe performance. Br J Psychiatry 1991;158:340345.CrossRefGoogle ScholarPubMed
53.Liddle, PF, Friston, KJ, Frith, CD. Patterns of cerebral blood flow in schizophrenia. Br J Psychiatry 1992;160:179–86.CrossRefGoogle ScholarPubMed
54.Malia, AK, Norman, RMG, Williamson, Pet al.Three syndrome concept of schizophrenia. A factoranalytic study. Schizophr Res 1993;10:143150.CrossRefGoogle Scholar
55.Gureje, O, Aderibigbe, YA, Obikoya, O. Three syndromes in schizophrenia: validity in young patients with recent onset of illness. Psychol Med 1995;25:715725.CrossRefGoogle ScholarPubMed
56.Schröder, J, Buchsbaum, MSet al.Cerebral metabolic activity correlates of subsyndromes in chronic schizophrenia. Schizophr Res 1996;19:4153.CrossRefGoogle ScholarPubMed
57.Silver, H, David, Det al.Factor analysis of schizophrenic symptoms and comparison of different rating scales. Schizophr Res 1993;10:6775.CrossRefGoogle ScholarPubMed
58.Knorring, L von, Lindstrom, E. Principal components and further possibilities with the PANSS. Acta Psychiatr Scand 1995;91:510.CrossRefGoogle Scholar
59.Cuesta, MJ, Peralta, V, Caro, F, et al.Schizophrenic syndrome and Wisconsin Card Sorting Test dimensions. Psychiatr Res 1995;58:4551.CrossRefGoogle ScholarPubMed
60.Basso, MR, Nasrallah, HAet al.Neuropsychological correlates of negative, disorganised and psychotic symptoms in schizophrenia. Schizophr Res 1998;31:99111.CrossRefGoogle ScholarPubMed
61.Nagahama, Y, Fukuyama, H, Yamauchi, H, et al.Cerebral activation during performance of a card sorting test. Brain 1996;119:16671675.CrossRefGoogle ScholarPubMed
62.Berman, I, Viegner, Bet al.Differential relationships between positive and negative symptoms and neuropsychological deficits in schizophrenia. Schizophr Res 1997;25:110.CrossRefGoogle ScholarPubMed