Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-02T07:53:57.028Z Has data issue: false hasContentIssue false

Colonization by oligochaetes (Annelida: Clitellata) in decomposing leaves of Eichhornia azurea (SW.) Kunth (Pontederiaceae) in a neotropical lentic system

Published online by Cambridge University Press:  31 January 2012

R. T. Martins*
Affiliation:
Graduate Program in Entomology, Instituto Nacional de Pesquisas da Amazônia – INPA, CP 478 69011-970 Manaus, Amazonas, Brazil
L. S. Silveira
Affiliation:
Universidade Federal de Juiz de Fora, Programa de Pós Graduação em Comportamento e Biologia Animal, Juiz de Fora, Brazil
R. G. Alves
Affiliation:
Universidade Federal de Juiz de Fora, Programa de Pós Graduação em Comportamento e Biologia Animal, Juiz de Fora, Brazil
*
*Corresponding author: martinsrt@gmail.com
Get access

Abstract

The objective of the present study was to examine the colonization of oligochaetes during the decomposition of leaves of the macrophyte Eichhornia azurea in a lentic system in southeastern Brazil. The experiment was conducted between September and November 2007, with the use of 21 nylon bags measuring 15×15 cm with 2 mm mesh, each containing 10 g of dried leaves. The bags were removed from the lake after 2, 5, 8, 12, 25, 45 and 65 days. At the end of the experiment, 31.40% of the initial mass remained, and the decomposition rate was 0.018 d−1. The mean density of oligochaetes during the experiment was 32.81±9.58 ind.g1 DM. The sub-families Naidinae and Pristininae accounted for 99.83% of the oligochaetes. The substrate quality influenced the colonization of E. azurea leaves, as observed from the cluster analysis by the formation of two groups based on increased density during the experiment, indicating a degradative ecological succession. During the decomposition there were changes in the community of oligochaetes, resulting from differences in the ability to exploit various food sources, with predominance of predators in the first decomposition phase and of collectors at the end of the experiment.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, A., González-Muñoz, N. and Castro-Díez, P., 2010. Comparison of leaf decomposition and macroinvertebrate colonization between exotic and native trees in a freshwater ecosystem. Ecol. Res. , 25, 647653.CrossRefGoogle Scholar
Armendáriz, L.C., 2008. Life cycle of Dero (Aulophorus) costatus Marcus, 1944 (Tubificidae, Oligochaeta) in a vegetated pond at Los Talas, Argentina. Gayana , 72, 2330.Google Scholar
Azevedo, M.T.P., Souza, C.A., Rosado, T., Huszar, V. and Roland, F., 2003. Limnothrix bicudoi, a new species of Cyanophyceae/Cyanobacteria from Southeast of Brazil. Algol. Stud. , 109, 93102.CrossRefGoogle Scholar
Bärlocher, F., 2005. Leaching. In: Bärlocher, F., Gessner, M.O., Graça, M.A.S. (eds.), Methods to study litter decomposition: a practical guide. Springer, Berlin/New York, pp. 3336.CrossRefGoogle Scholar
Bärlocher, F. and Porter, C.W., 1986. Digestive enzymes and feeding strategies of three stream invertebrates. J. N. Am. Benthol. Soc. , 5, 5866.CrossRefGoogle Scholar
Bohman, I.M. and Herrmann, J., 2006. The timing of winter-growing shredder species and leaf litter turnover rate in an oligotrophic lake, SE Sweden. Hydrobiologia , 556, 99108.CrossRefGoogle Scholar
Bojková, J., Schenková, J., Horsák, M. and Hájek, M., 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia , 667, 159171.CrossRefGoogle Scholar
Boulton, A.J. and Boon, P.I., 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Aust. J. Mar. Freshw. Res. , 42, 143.CrossRefGoogle Scholar
Brinkhurst, R.O. and Jamieson, B.G.M., 1971. Aquatic Oligochaeta of the World. University of Toronto Press, Toronto.Google Scholar
Brinkhurst, R.O. and Marchese, M.R., 1989. Guia para la indentificación de oligoquetos acuáticos continentales de Sud y Centroamérica. Asociacíon de Ciências Naturales del Litoral, Argentina.Google Scholar
Capello, S., Marchese, M. and Ezcurra De Drago, I., 2004. Descomposición y colonización por invertebrados de hojas de Salix humboldtiana en la llanura aluvial Del río Paraná Medio. Amazoniana , 18, 125143.Google Scholar
Carvalho, E.M. and Uieda, V.S., 2004. Colonization by benthic macroinvertebrates in artificial and natural substrates in a mountain stream from Itatinga, São Paulo, Brazil. Rev. Bras. Zool. , 21, 287293.CrossRefGoogle Scholar
Chauvet, E., 1997. Leaf litter decomposition in large rivers: the case of the River Garonne. Limnetica , 13, 6570.CrossRefGoogle Scholar
Chauvet, E., Giani, N. and Gessner, M.O., 1993. Breakdown and invertebrate colonization of leaf litter in two contrasting streams: significance of Oligochaetes in a large river. Can. J. Fish. Aq. Sci. , 50, 488495.CrossRefGoogle Scholar
Dufrêne, M. and Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. , 67, 345366.Google Scholar
Elissen, H.J.H., Peeters, E.T.H.M., Buys, B.R., Klapwijk, A. and Rulkens, W., 2008. Population dynamics of free-swimming Annelida in four Dutch wastewater treatment plants in relation to process characteristics. Hydrobiologia , 605, 131142.CrossRefGoogle Scholar
Ferreiro, N., Feijoó, C., Giorgi, A. and Leggieri, L., 2011. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia , 664, 199211.CrossRefGoogle Scholar
Galizzi, M.C. and Marchese, M., 2007. Descomposición de hojas de Tessaria integrifólia (Asteraceae) y colonización por invertebrados en un cauce secundario del río Paraná Medio. Interciencia , 32, 535540.Google Scholar
Galizzi, M.C. and Marchese, M., 2009. Invertebrate colonization on Eucalyptus camaldulensis Dehnhardt leaf litter breakdown in an anabranche of the Middle Paraná River. Hidrobiológica , 19, 141149.Google Scholar
Gaudes, A., Artigas, J., Romaní, A.M., Sabater, S. and Muñoz, I., 2009. Contribution of microbial and invertebrate communities to leaf litter colonization in a Mediterranean stream. J. N. Am. Benthol. Soc. , 28, 3443.CrossRefGoogle Scholar
Gessner, M.O., Chauvet, E. and Dobson, M., 1999. A perspective on leaf litter breakdown in streams. Oikos , 85, 377384.CrossRefGoogle Scholar
Gonçalves, J.F. Jr., Esteves, F.A. and Callisto, M., 2003. Chironomids colonization on Nymphaea ampla L. detritus during a degradative ecological sucession experiment in a Brazilian coastal lagoon. Acta limnol. Bras. , 15, 2127.Google Scholar
Gonçalves, J.F. Jr., Santos, A.M. and Esteves, F.A., 2004. The influence of the chemical composition of Typha domingensis and Nymphaea ampla detritus on invertebrate colonization during decomposition in a Brazilian coastal lagoon. Hydrobiologia , 527, 125137.CrossRefGoogle Scholar
Gonçalves, J.F. Jr., França, J.S., Medeiros, A.O., Rosa, C.A. and Callisto, M., 2006. Leaf breakdown in a tropical stream. Internat. Rev. Hydrobiol. , 91, 164177.CrossRefGoogle Scholar
Gonçalves, J.F. Jr., Graça, M.A.S. and Callisto, M., 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrient levels and low density of shredders. Freshw. Biol. , 52, 14401451.CrossRefGoogle Scholar
Gulis, V. and Suberkropp, K., 2003. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat. Microb. Ecol. , 30, 149157.CrossRefGoogle Scholar
Hammer, Ø., Harper, D.A.T. and Ryan, P.D., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeont. Elect. , 4, 19.Google Scholar
Harrison, S.S.C., Bradley, D.C. and Harris, I.T., 2005. Uncoupling strong predator-prey interactions in streams: the role of marginal macrophytes. Oikos , 108, 433448.CrossRefGoogle Scholar
Learner, M.A., Lochhead, G. and Hughes, B.D., 1978. A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environment. Freshw. Biol. , 8, 357375.CrossRefGoogle Scholar
Levin, L.A., Talley, D.M. and Thayer, G., 1996. Macrobenthic succession in a created salt marsh. Mar. Ecol., Prog. Ser. , 141, 6782.CrossRefGoogle Scholar
Ligeiro, R., Moretti, M.S., Gonçalves, J.F. Jr. and Callisto, M., 2010. What is more important for invertebrate colonization in a stream with low-quality litter inputs: exposure time or leaf species? Hydrobiologia , 654, 237244.CrossRefGoogle Scholar
Mathuriau, C. and Chauvet, E., 2002. Breakdown of litter in a neotropical stream. J. N. Am. Benthol. Soc. , 21, 384396.CrossRefGoogle Scholar
Moretti, M.S., Gonçalves, J.F., Ligeiro, R. and Callisto, M., 2007. Invertebrates colonization on native trees leaves in a neotropical stream (Brazil). Internat. Rev. Hydrobiol. , 92, 199210.CrossRefGoogle Scholar
Mormul, R.P., Vieira, L.A., Pressinatte Júnior, S., Monkolski, A. and Santos, A.M., 2006. Sucessão de invertebrados durante o processo de decomposição duas plantas aquáticas (Eichhornia azurea e Polygonum ferrugineum). Acta Sci. Biol. Sci. , 28, 109115.Google Scholar
Nelson, S.M., 2011. Comparisons of macrophyte breakdown, associated plant chemistry, and macroinvertebrates in a wastewater dominated stream. Internat. Rev. Hydrobiol. , 96, 7289.CrossRefGoogle Scholar
Newman, R.M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J. N. Am. Benthol. Soc. , 10, 89114.CrossRefGoogle Scholar
Ohtaka, A., Narita, T., Kamiya, T., Katakura, H., Araki, Y., Im, S., Chhay, R. and Tsukawaki, S., 2010. Composition of aquatic invertebrates associated with macrophytes in Lake Tonle Sap, Cambodia. Limnology , 6, 91103.Google Scholar
Pagioro, T.A. and Thomaz, S.M., 1998. Loss of weight and concentration of carbon nitrogen and phosphorus during decomposition of Eichhornia azurea in the floodplain of the upper Paraná River, Brazil. Rev. Bras. Biol. , 58, 603608.CrossRefGoogle Scholar
Petersen, R.C. and Cummins, K.W., 1974. Leaf processing in a woodland stream. Freshw. Biol. , 4, 343368.CrossRefGoogle Scholar
Pieczńska, E., 1993. Detritus and nutrient dynamics in the shore zone of lakes: a review. Hydrobiologia , 251, 4958.CrossRefGoogle Scholar
Ramseyer, U. and Marchese, M., 2009. Leaf litter of Erythrina crista-galli L. (ceibo): trophic and substratum resources for benthic invertebrates in a secondary channel of the Middle Paraná River. Limnetica , 28, 110.CrossRefGoogle Scholar
Rennie, M.D. and Jackson, L.J., 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Can. J. Fish. Aq. Sci. , 62, 20882099.CrossRefGoogle Scholar
Righi, G., 1984. Manual de identificação de invertebrados límnicos do Brasil – Oligochaeta. CNPq, Brasil.Google Scholar
Roland, F., Esteves, F.A. and Santos, J.E., 1990. Decomposição da macrófita aquática Eichhornia azurea (Kunth), com ênfase na colonização por bactérias epifíticas. Acta Limnol. Bras. , 3, 653673.Google Scholar
Schenková, J. and Helesic, J., 2006. Habitat preferences of aquatic Oligochaeta (Annelida) in the Rokttná River, Czech Republic – a small highland stream. Hydrobiologia , 564, 117126.CrossRefGoogle Scholar
Schulze, D.J. and Walker, K.F., 1997. Riparian eucalypts and willows and their significance for aquatic invertebrates in the River Murray, South Australia. Regul. Riv.: Res. Manage. , 13, 557577.3.0.CO;2-Q>CrossRefGoogle Scholar
Silva, D.S., Cunha-Santino, M.B., Marques, E.E. and Bianchini, I. Jr., 2011. The decomposition of aquatic macrophytes: bioassays versus in situ experiments. Hydrobiologia , 665, 219227.CrossRefGoogle Scholar
Smock, L.A. and Stoneburner, D.L., 1980. The response of macroinvertebrate to aquatic macrophyte decomposition. Oikos , 35, 397403.CrossRefGoogle Scholar
Stoler, A.B. and Relyea, R.A., 2011. Living in the litter: the influence of tree leaf litter on wetland communities. Oikos , 120, 862872.CrossRefGoogle Scholar
Stripari, N. and Henry, R., 2002. The invertebrate colonization during decomposition of Eichhornia azurea Kunth in a lateral lake in the mouth zone of Paranapanema river into Jurumirim Reservoir (São Paulo, Brazil). Braz. J. Biol. , 62, 293310.CrossRefGoogle Scholar
Swan, C.M. and Palmer, M.A., 2004. Leaf diversity alters litter breakdown in a Piedmont stream. J. N. Am. Benthol. Soc. , 23, 1528.2.0.CO;2>CrossRefGoogle Scholar
Syrovátka, V., Schenková, J. and Brabec, K., 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fundam. Appl. Limnol. , 173, 4362.CrossRefGoogle Scholar
Thomaz, S.M., Dibble, E.D., Evangelista, L.R., Higuti, J. and Bini, L.M., 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw. Biol. , 53, 358367.Google Scholar
Walpola, H., Leichtfried, M., Amarasinghe, M. and Füreder, L., 2011. Leaf litter decomposition of three riparian tree species and associated macroinvertebrates of Eswathu Oya, a low order tropical stream in Sri Lanka. Internat. Rev. Hydrobiol. , 96, 90104.CrossRefGoogle Scholar
Walters, K.H. and Smock, L.A., 1991. Cellulase activity of leaf litter and stream-dwelling, shredder macroinvertebrates. Hydrobiologia , 220, 2935.CrossRefGoogle Scholar
Xie, Z., Shu, S., Zhang, J., Chen, J. and Cai, Q., 2008. Oligochaete assemblages associated with macrophytes in the Liangzi Lake District, China. J. Freshw. Ecol. , 23, 237244.CrossRefGoogle Scholar