Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T07:11:49.041Z Has data issue: false hasContentIssue false

Food-web structure and functioning of temperate and tropical lakes: A stoichiometric viewpoint

Published online by Cambridge University Press:  03 April 2009

Michael Danger*
Affiliation:
UMR CNRS 8079 - ESE, Laboratoire de Systématique, Écologie et Évolution, Université Paris Sud XI, Bât. 362, 91405 Orsay, France Current address: Laboratoire d'Écologie Fonctionnelle, Ecolab UMR 5245, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France
Gérard Lacroix
Affiliation:
Laboratoire Bioemco, UMR 7618 (Université Paris 6, CNRS, INRA, ENS), École Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
Samba Kâ
Affiliation:
IRD, UR167-CYROCO, Campus mixte ISRA-IRD Bel-Air, BP 1386, CP 18524, Dakar, Senegal
El Hadji Ndour
Affiliation:
IRD, UR167-CYROCO, Campus mixte ISRA-IRD Bel-Air, BP 1386, CP 18524, Dakar, Senegal
Daniel Corbin
Affiliation:
IRD, UR167-CYROCO, Campus mixte ISRA-IRD Bel-Air, BP 1386, CP 18524, Dakar, Senegal
Xavier Lazzaro
Affiliation:
IRD, UR167-CYROCO, Campus mixte ISRA-IRD Bel-Air, BP 1386, CP 18524, Dakar, Senegal Current address: UR 131-AMAZONE, UMR 5178-BOEA-USM 0401, CP 53, 61 rue Buffon, 75231 Paris Cedex 5, France
Get access

Abstract

Difficulties to simply transfer trophic cascade theory from temperate to tropical lakes are now well recognized. Many mechanisms trying to explain top-down divergences between these systems have been proposed, such as lack of key species of herbivorous zooplankton, absence of seasonality in fish reproduction, cyanobacteria development, or differences in fish foraging behaviour. Very few studies have considered bottom-up mechanisms, in particular differences in nutrient recycling and nutrient limitation between the two types of ecosystems. According to the ecological stoichiometry theory, fish-induced alterations of food-web structure could modify the efficiency of consumer-driven nutrient recycling by changing the relative biomass contribution of species in food webs. Consequently, by mostly considering top-down processes, one could underestimate consequences on nutrient availability for phytoplankton growth. In this paper, we compared the results of two mesocosm experiments carried out in temperate and tropical areas, each manipulating food-web structure via the presence or absence of fish. We found trophic cascades in both experiments, but differences between fishless and fish treatments were greater in temperate than in tropical systems. In the tropical experiment, the observed effects could not be supported by classical zooplankton community alteration or by cyanobacteria prevalence. Our results suggest a key contribution of fish nitrogen-excretion to phytoplankton growth in mostly nitrogen-limited tropical systems. Differences in stoichiometric response to food-web structure alteration between temperate and tropical lakes could thus represent a major difference between the two systems. Our study stresses the need for further studies that would allow robust generalization on the functioning of freshwater temperate and tropical ecosystems.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agren, G.I., 2004. The C:N:P stoichiometry of autotrophs - theory and observations. Ecol. Lett. , 7, 185-191. CrossRef
Andersen, T. and Hessen, D.O., 1991. Carbon, nitrogen and phosphorus content of freshwater zooplankton. Limnol. Oceanogr. , 36, 807-813. CrossRef
Arrigo, K.R., 2005. Marine microorganisms and global nutrient cycles. Nature , 437, 349-355. CrossRef
Attayde, J.L. and Hansson, L.-A., 1999. Effects of nutrient recycling by zooplankton and fish on phytoplankton communities. Oecologia , 121, 47-54. CrossRef
Attayde, J.L. and Hansson, L.-A., 2001. Fish-mediated nutrient recycling and the trophic cascade in lakes. Can. J. Fish. Aqua. Sci. , 58, 1924-1931. CrossRef
Batjakas, I.E., Edgar, R.K. and Kaufman, L.S., 1997. Comparative feeding efficiency of indigenous and introduced phytoplanktivores from Lake Victoria: experimental studies on Oreochromis esculentus and Oreochromis niloticus. Hydrobiologia , 347, 75-82. CrossRef
Bertolo, A., Lacroix, G. and Lescher-Moutoué, F., 1999a. Scaling food chains in aquatic mesocosms: do the effects of depth override the effects of planktivory?. Oecologia , 121, 55-65. CrossRef
Bertolo, A., Lacroix, G., Lescher-Moutoué, F. and Sala, S., 1999b. Effects of physical refuges on fish-plankton interactions. Freshwat. Biol. , 41, 795-808. CrossRef
Bertolo, A., Lacroix, G., Lescher-Moutoué, F. and Cardinal-Legrand, C., 2000. Plankton dynamics in planktivore- and piscivore-dominated mesocosms. Arch. Hydrobiol. , 147, 327-349. CrossRef
Brett, M.T. and Goldman, C.R., 1996. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. USA , 93, 7723-7726. CrossRef
Carpenter S.R. and Kitchell J.F. (eds.), 1993. The Trophic Cascade in Lakes, Cambridge University Press, Cambridge, UK, 385 p.
Danger, M., Leflaive, J., Oumarou, C., Ten-Hage, L. and Lacroix, G., 2007a. Control of phytoplankton-bacteria interactions by stoichiometric constraints. Oikos , 116, 1079-1086.
Danger, M., Oumarou, C., Benest, D. and Lacroix, G., 2007b. Bacteria can control stoichiometry and nutrient limitation of phytoplankton. Funct. Ecol. , 21, 202-210. CrossRef
Danger, M., Lacroix, G., Oumarou, C., Benest, D. and Mériguet, J., 2008. Effects of food-web structure on periphyton stoichiometry in eutrophic lakes: A mesocosm study. Freshwat. Biol. , 53, 2089-2100. CrossRef
Dantas, M.C. and Attayde, J.L., 2007. Nitrogen and phosphorus content of some temperate and tropical freshwater fishes. J. Fish Biol. , 70, 100-108. CrossRef
Downing, J.A., Osenberg, C.W. and Sarnelle, O., 1999. Meta-analysis of marine nutrient-enrichment experiments: variation in the magnitude of nutrient limitation. Ecology , 80, 1157-1167. CrossRef
Elrifi, I.R. and Turpin, D.H., 1985. Steady-state luxury consumption and the concept of optimum nutrient ratios: A study with phosphate and nitrate limited Selenastrum minutum (Chlorophyta). J. Phycol. , 21, 592-602. CrossRef
Elser, J.J. and Urabe, J., 1999. The stoichiometry of consumer-driven nutrient cycling: theory, observations, and consequences. Ecology , 80, 735-751. CrossRef
Elser, J.J., Dobberfuhl, D., Mackay, N.A. and Schampel, J.H., 1996. Organism size, life history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. Bioscience , 46, 674-684. CrossRef
Elser, J.J., Sterner, R.W., Galford, A.E., Chrzanowski, T.H., Findlay, D.L., Mills, K.H., Paterson, M.J., Stainton, M.P. and Schindler, D.W., 2000. Pelagic C:N:P stoichiometry in a eutrophied lake: responses to a whole-lake food-web manipulation. Ecosystems , 3, 293-307. CrossRef
Fernando, C.H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia , 272, 105-123. CrossRef
Figueredo, C.C. and Giani, A., 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwat. Biol. , 50, 1391-1403. CrossRef
Gillooly, J.F. and Dodson, S.I., 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnol. Oceanogr. , 45, 22-30. CrossRef
Gliwicz, Z.M., 1994. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia , 272, 201-210. CrossRef
Griffiths, D., 2006. The direct contribution of fish to lake phosphorus cycles. Ecol. Freshwat. Fish , 15, 86-95. CrossRef
Hendrixson, H.A., Sterner, R.W. and Kay, A.D., 2007. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish Biol. , 70, 121-140. CrossRef
Jeppesen E., Søndergaard M., Mazzeo N., Meerhoff M., Branco C.C., Huszar V. and Scasso F., 2005. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In: Reddy V. (ed.), Tropical eutrophic lakes: their restoration and management, Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi and Science Publishers Inc., New Hampshire, USA, 351-376.
Kâ S., 2006. Communautés zooplanctoniques de deux lacs tropicaux (lac de Guiers et réservoir de Dakar Bango, Sénégal): relations avec les facteurs environnementaux, le phytoplancton et les efflorescences cyanobactériennes. Thèse de l'Université d'Aix-Marseille 1, Sciences de l'Environnement, 212+127 pp. (Two volumes).
Kraft, C.E., 1993. Phosphorus regeneration by Lake Michigan alewives in the mid-1970s. Trans. Am. Fish. Soc. , 122, 749-755. 2.3.CO;2>CrossRef
Lacroix, G. and Lescher-Moutoué, F., 1991. Interaction effects of nutrient loading and density of young-of-the-year cyprinids on eutrophication in a shallow lake: an experimental mesocosm study. Mem. Ist. Ital. Idrobiol. , 48, 53-73.
Lacroix, G., Boët, P., Garnier, J., Lescher-Moutoué, F., Pourriot, R. and Testard, P., 1989. Factors controlling the planktonic community in the shallow lake of Créteil, France. Int. Revue Ges. Hydrobiol. , 74, 353-370. CrossRef
Lacroix G., Lescher-Moutoué F. and Pourriot R., 1996. Trophic interactions, nutrient supply, and structure of freshwater pelagic food webs. In: Hochberg M., Clobert J. and Barbault R. (eds.), Aspects in the Genesis and Maintenance of Biological Diversity, Oxford Univ. Press, Oxford, UK, 162-179.
Lazzaro X., 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verh. Internat. Verein. Limnol., 26, 719-730.
Lazzaro, X., Bouvy, M., Ribeiro-Filho, A., Oliviera, V.S., Sales, L.T., Vasconcelos, A.R.M. and Mata, M.R., 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs?. Freshwat. Biol. , 48, 649-668. CrossRef
Lewis W.M. Jr., 1996. Tropical lakes: how latitude makes a difference. In: Schiemer F. and Boland K.T. (eds.), Perspectives in Tropical Limnology, SPB Academic Publishers, Amsterdam, The Netherlands, 43-64.
Lewis, W. Jr., 2002. Causes for the high frequency of nitrogen limitation in tropical lakes. Verh. Internat. Verein. Limnol. , 28, 210-213.
Nilssen, J.P., 1984. Tropical lakes-functionnal ecology and future development: the need for a process-orientated approach. Hydrobiologia , 113, 231-242. CrossRef
Okun, N., Brasil, J., Attayde, J.L. and Costa, I.A.S., 2008. Omnivory does not prevent trophic cascades in pelagic food webs. Freshwat. Biol. , 53, 129-138.
Pinel-Alloul, B., Mazumder, A., Lacroix, G. and Lazzaro, X., 1998. Les réseaux trophiques lacustres: structure, fonctionnement, interactions et variations spatio-temporelles. Rev. Sci. Eau , 11, 163-197.
Polis, G.A., 1999. Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos , 86, 3-15. CrossRef
Polis, G.A., Sears, A.L.W., Huxel, G.R. and Strong, D.R., 2000. When is a trophic cascade a trophic cascade?. TREE , 15, 473-475.
Rhee, G.-V., 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnol. Oceanogr. , 23, 10-25. CrossRef
Rondel, C., Arfi, R., Corbin, C., Le Bihan, F., Ndour, E.H. and Lazzaro, X., 2008. A cyanobacterial bloom prevents fish trophic cascades. Freshwat. Biol. , 53, 637-651. CrossRef
Roozen, F.C.J.M., Lurling, M., Vlek, H., Kraan, E.A.J.V.P., Ibelings, B.W. and Scheffer, M., 2007. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwat. Biol. , 52, 977-987. CrossRef
Ryding S.O. and Rast W. (eds.), 1989. The Control of Eutrophication of Lakes and Reservoirs, UNESCO, Man and the Biosphere Series, Vol. 1, Parthenon Publishing, Paris, 314 p.
Sarnelle, O. and Knapp, R.A., 2005. Nutrient recycling by fish versus zooplankton grazing as drivers of the trophic cascade in alpine lakes. Limnol. Oceanogr. , 50, 2032-2042. CrossRef
Schaefer, S.C. and Alber, M., 2007. Temperature controls a latitudinal gradient in the proportion of watershed nitrogen exported to coastal ecosystems. Biogeochemistry , 85, 333-346. CrossRef
Schindler, D.E., 1992. Nutrient regeneration by Sockeye Salmon (Oncorhynchus nerka) fry and subsequent effects on zooplankton and phytoplankton. Can. J. Fish. Aquat. Sci. , 49, 2498-2506. CrossRef
Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science , 195, 260-262. CrossRef
Schmitz, O.J., Hambäck, P.A. and Bekerman, A.P., 2000. Trophic cascades in terrestrial systems: A review of the effects of carnivore removals on plants. Am. Nat. , 155, 141-153. CrossRef
Sereda, J.M., Hudson, J.J., Taylor, W.D. and Demers, E., 2008. Fish as sources and sinks of nutrients in lakes. Freshwat. Biol. , 53, 278-289.
Starling, F., Lazzaro, X., Cavalcanti, C. and Moreira, R., 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Freshwat. Biol. , 47, 2443-2452. CrossRef
Sterner R.W. and Elser J.J. (eds.), 2002. Ecological stoichiometry: The biology of elements from molecules to biosphere, Princeton University Press, Princeton, NJ, USA, 439 p.
Strong, D.R., 1992. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology , 73, 747-754. CrossRef
Talling J.F. and Lemoalle J., 1998. Ecological Dynamics of Tropical Inland Waters, Cambridge University Press, Cambridge, 451 p.
Torres, L.E. and Vanni, M.J., 2007. Stoichiometricy of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos , 116, 259-270. CrossRef
van Leeuwen, E., Lacerot, G., van Nes, E.H., Hemerik, L. and Scheffer, M., 2007. Reduced top-down control of phytoplankton in warmer climates can be explained by continuous fish reproduction. Ecol. Model. , 206, 205-212. CrossRef
Vanni, M.J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. , 33, 341-370. CrossRef
Vanni, M.J. and Layne, C.D., 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on algae in lakes. Ecology , 78, 21-40.
Vanni, M.J., Flecker, A.S., Hood, J.M. and Headworth, J.L., 2002. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecol. Lett. , 5, 285-293. CrossRef
Vanni, M.J., Bowling, A.M., Dickman, E.M., Hale, R.S., Higgins, K.A., Horgan, M.J., Knoll, L.B., Renwick, W.H. and Stein, R.A., 2006. Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology , 87, 1696-1709. CrossRef