Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T21:15:04.725Z Has data issue: false hasContentIssue false

A Hermite spline approach for modelling population mortality

Published online by Cambridge University Press:  17 October 2022

Sixian Tang*
Affiliation:
Department of Econometrics and Business Statistics, Monash University, Melbourne, VIC, Australia School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, WA, Australia
Jackie Li
Affiliation:
Department of Econometrics and Business Statistics, Monash University, Melbourne, VIC, Australia
Leonie Tickle
Affiliation:
Department of Actuarial Studies and Business Analytics, Macquarie University, Sydney, NSW, Australia
*
*Corresponding author. E-mail: sixian.tang@monash.edu

Abstract

One complication in mortality modelling is capturing the impact of risk factors that contribute to mortality differentials between different populations. Evidence has suggested that mortality differentials tend to diminish over age. Classical methods such as the Gompertz law attempt to capture mortality patterns over age using intercept and slope parameters, possibly causing an unjustified mortality crossover at advanced ages when applied independently to different populations. In recent research, Richards (Scandinavian Actuarial Journal 2020(2), 110–127) proposed a Hermite spline (HS) model that describes the age pattern of mortality differentials using one parameter and circumvents an unreasonable crossover by default. The original HS model was applied to pension data at individual level in the age dimension only. This paper extends the method to model population mortality in both age and period dimensions. Our results indicate that in addition to possessing desirable fitting properties, the HS approach can produce accurate mortality forecasts, compared with the Gompertz and P-splines models.

Type
Original Research Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Institute and Faculty of Actuaries

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alho, J. & Spencer, B. (2006). Statistical Demography and Forecasting. Springer, New York.Google Scholar
Black, D.A., Hsu, Y.-C., Sanders, S.G., Schofield, L.S. & Taylor, L.J. (2017). The Methuselah effect: the pernicious impact of unreported deaths on old-age mortality estimates. Demography 54(6), 20012024.CrossRefGoogle ScholarPubMed
Blake, D., Cairns, A.J.G., Dowd, K. & Kessler, A.R. (2018). Still living with mortality: the longevity risk transfer market after one decade. British Actuarial Journal 24(1), 180. doi: 10.1017/S1357321718000314 CrossRefGoogle Scholar
Bohk-Ewald, C. & Rau, R. (2017). Probabilistic mortality forecasting with varying age-specific survival improvements. Genus 73(1), 137.CrossRefGoogle ScholarPubMed
Booth, H. & Tickle, L. (2008). Mortality modelling and forecasting: a review of methods. Annals of Actuarial Science 3(1–2), 343.CrossRefGoogle Scholar
Brouhns, N., Denuit, M. & Van Keilegom, I. (2005). Bootstrapping the Poisson log-bilinear model for mortality forecasting. Scandinavian Actuarial Journal 2005(3), 212224. doi: 10.1080/03461230510009754 CrossRefGoogle Scholar
Brouhns, N., Denuit, M. & Vermunt, J.K. (2002). A Poisson log-bilinear regression approach to the construction of projected lifetables. Insurance: Mathematics and Economics 31(3), 373393. Available online at the address https://EconPapers.repec.org/RePEc:eee:insuma:v:31:y:2002:i:3:p:373-393 Google Scholar
Cairns, A.J.G., Blake, D. & Dowd, K. (2006). A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. Journal of Risk and Insurance 73(4), 687718. doi: 10.1111/j.1539-6975.2006.00195.x CrossRefGoogle Scholar
Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D. & Khalaf-Allah, M. (2011). Mortality density forecasts: an analysis of six stochastic mortality models. Insurance: Mathematics and Economics 48(3), 355367. Available online at the address https://doi.org/10.1016/j.insmatheco.2010.12.005%3cb%3e Google Scholar
Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A. & Balevich, I. (2009). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal 13(1), 135. doi: 10.1080/10920277.2009.10597538 CrossRefGoogle Scholar
Camarda, C.G. (2012). MortalitySmooth: an R package for smoothing Poisson counts with P-splines. Journal of Statistical Software 50(1), 124.CrossRefGoogle Scholar
Camarda, C.G. (2019). Smooth constrained mortality forecasting. Demographic Research 41, 10911130.CrossRefGoogle Scholar
Christensen, K., Doblhammer, G., Rau, R. & Vaupel, J.W. (2009). Ageing populations: the challenges ahead. The Lancet 374(9696), 11961208.CrossRefGoogle ScholarPubMed
Coale, A.J. & Kisker, E. (1990). Defects in data on old-age mortality in the United States: New procedures for calculating mortality schedules and life tables at the highest ages (Vol. 4).Google Scholar
Cocevar, P. (2007). An analysis of recent mortality trends in the Italian population using penalised B-spline regression. Giornale dell’Istituto Italiano degli Attuari 70, 2143.Google Scholar
Currie, I.D. (2006). Smoothing and forecasting mortality rates with P-splines. Talk given at the Institute of Actuaries.Google Scholar
Currie, I.D., Durban, M. & Eilers, P.H. (2004). Smoothing and forecasting mortality rates. Statal Modelling An International Journal 4(4), 279298.CrossRefGoogle Scholar
Currie, I.D., Durban, M. & Eilers, P.H. (2006). Generalized linear array models with applications to multidimensional smoothing. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68(2), 259280.CrossRefGoogle Scholar
De Jong, P. & Tickle, L. (2006). Extending Lee–Carter mortality forecasting. Mathematical Population Studies 13(1), 118. doi: 10.1080/08898480500452109 CrossRefGoogle Scholar
Delwarde, A., Denuit, M. & Eilers, P. (2007). Smoothing the Lee–Carter and Poisson log-bilinear models for mortality forecasting: a penalized log-likelihood approach. Statistical Modelling 7(1), 2948.CrossRefGoogle Scholar
Dokumentov, A., Hyndman, R.J. & Tickle, L. (2018). Bivariate smoothing of mortality surfaces with cohort and period ridges. Stat 7(1), e199.CrossRefGoogle Scholar
Dowd, K., Cairns, A.J., Blake, D., Coughlan, G.D., Epstein, D. & Khalaf-Allah, M. (2010a). Backtesting stochastic mortality models: an ex post evaluation of multiperiod-ahead density forecasts. North American Actuarial Journal 14(3), 281298.CrossRefGoogle Scholar
Dowd, K., Cairns, A.J., Blake, D., Coughlan, G.D., Epstein, D. & Khalaf-Allah, M. (2010b). Evaluating the goodness of fit of stochastic mortality models. Insurance: Mathematics and Economics 47(3), 255265.Google Scholar
Dowd, K., Cairns, A.J.G., Blake, D., Coughlan, G.D., Epstein, D. & Khalaf-Allah, M. (2010c). Backtesting stochastic mortality models. North American Actuarial Journal 14(3), 281298. doi: 10.1080/10920277.2010.10597592 CrossRefGoogle Scholar
Eilers, P.H., Currie, I.D. & Durbán, M. (2006). Fast and compact smoothing on large multidimensional grids. Computational Statistics & Data Analysis 50(1), 6176.CrossRefGoogle Scholar
Eilers, P.H. & Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science 11(2), 89121.CrossRefGoogle Scholar
Eilers, P.H. & Marx, B.D. (2003). Multivariate calibration with temperature interaction using two-dimensional penalized signal regression. Chemometrics and Intelligent Laboratory Systems 66(2), 159174.CrossRefGoogle Scholar
Eilers, P.H.C. & Marx, B.D. (2002). Generalized linear additive smooth structures. Journal of Computational and Graphical Statistics 11(4), 758783.CrossRefGoogle Scholar
Forfar, D.O. (2014). Mortality laws. In Wiley StatsRef: Statistics Reference Online (pp. 111).Google Scholar
Gampe, J. (2010). Human mortality beyond age 110. In H. Maier, J. Gampe, B. Jeune, J.-M. Robine & J.W. Vaupel (Eds.), Supercentenarians (pp. 219230). Springer Berlin Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Gavrilov, L.A. & Gavrilova, N.i.a.S. (1991). The Biology of Life Span: A Quantitative Approach. Harwood Academic Publishers,New York.Google Scholar
Gavrilov, L.A. & Gavrilova, N.S. (2001). The reliability theory of aging and longevity. Journal of theoretical Biology 213(4), 527545.CrossRefGoogle ScholarPubMed
Gompertz, B. (1825). XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical Transactions of the Royal Society of London 115, 513583.Google Scholar
Haberman, S., Kaishev, V., Millossovich, P., Villegas, A., Baxter, S., Gaches, A., Gunnlaugsson, S., & Sison, M. (2014). Longevity Basis Risk – A Methodology for Assessing Basis Risk. Available online at the address http://openaccess.city.ac.uk/id/eprint/16835/ Google Scholar
Hermite, M. (1864). Sur un nouveau développement en série des fonctions. Imprimerie de Gauthier-Villars.Google Scholar
Human Mortality Database. (2021). University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available online at the address www.mortality.org [accessed 4-Sep-2020].Google Scholar
Hyndman, R.J., Booth, H. & Yasmeen, F. (2013). Coherent mortality forecasting: the product-ratio method with functional time series models. Demography 50(1), 261283.CrossRefGoogle ScholarPubMed
Hyndman, R.J. & Ullah, M.S. (2007). Robust forecasting of mortality and fertility rates: a functional data approach. Computational Statistics & Data Analysis 51(10), 49424956.CrossRefGoogle Scholar
Kreyszig, E. (2009). Advanced Engineering Mathematics, 10th edition. Wiley, New York.Google Scholar
Lee, R.D. & Carter, L.R. (1992). Modeling and forecasting US mortality. Journal of the American Statistical Association 87(419), 659671. doi: 10.1080/01621459.1992.10475265 Google Scholar
Li, J. (2013). A Poisson common factor model for projecting mortality and life expectancy jointly for females and males. Population Studies 67(1), 111126. doi: 10.1080/00324728.2012.689316 CrossRefGoogle ScholarPubMed
Li, J.S.-H. & Liu, Y. (2020). The heat wave model for constructing two-dimensional mortality improvement scales with measures of uncertainty. Insurance: Mathematics and Economics 93, 126. Available online at the address https://doi.org/10.1016/j.insmatheco.2020.04.001 Google Scholar
Li, J.S.-H. & Liu, Y. (2021). Recent declines in life expectancy: implication on longevity risk hedging. Insurance: Mathematics and Economics 99, 376394.Google Scholar
Li, N. & Lee, R. (2005). Coherent mortality forecasts for a group of populations: an extension of the lee-carter method. Demography 42(3), 575594. doi: 10.1353/dem.2005.0021 CrossRefGoogle ScholarPubMed
Makeham, W.M. (1867). On the law of mortality. Journal of the Institute of Actuaries (1866-1867) 13(6), 325358.CrossRefGoogle Scholar
Marschner, S. & Shirley, P. (2018). Fundamentals of Computer Graphics. CRC Press, Natick, Massachusetts.CrossRefGoogle Scholar
McNown, R. & Rogers, A. (1989). Forecasting mortality: a parameterized time series approach. Demography 26(4), 645660.CrossRefGoogle ScholarPubMed
Newman, S.J. (2018). Errors as a primary cause of late-life mortality deceleration and plateaus. PLoS Biology 16(12), e2006776.CrossRefGoogle ScholarPubMed
Perks, W. (1932). On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries (1886-1994) 63(1), 1257.CrossRefGoogle Scholar
Renshaw, A.E. & Haberman, S. (2003). Lee–Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics 33(2), 255272.Google Scholar
Renshaw, A.E. & Haberman, S. (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics 38(3), 556570. Available online at the address https://EconPapers.repec.org/RePEc:eee:insuma:v:38:y:2006:i:3:p:556-570 Google Scholar
Richards, S.J. (2020). A Hermite-spline model of post-retirement mortality. Scandinavian Actuarial Journal 2020(2), 110127.CrossRefGoogle Scholar
Richards, S.J. (2021). A value-at-risk approach to mis-estimation risk. Institute and Faculty of Actuaries. Available online at the address https://ifoad7.ifoaprod1.com/system/files/field/document/Sessional%20Final%20Paper.pdf.Google Scholar
Richards, S.J., Ellam, J.R., Hubbard, J., Lu, J.L.C., Makin, S.J., & Miller, K.A. (2007). Two-dimensional mortality data: patterns and projections. British Actuarial Journal 13(3), 479536. doi: 10.1017/S1357321700001537 CrossRefGoogle Scholar
Schoenberg, I. (1969). Cardinal interpolation and spline functions. Journal of Approximation Theory 2(2), 167206.CrossRefGoogle Scholar
Tickle, L. (1997). The Sex Differential in Mortality Rates and Underlying Factors. School of Economic and Financial Studies, Macquarie University.Google Scholar
Villegas, A., Haberman, S., Kaishev, V.K. & Millossovich, P. (2017). A comparative study of two population models for the assessment of basis risk in longevity hedges. ASTIN Bulletin 47(3), 631679.CrossRefGoogle Scholar
Wright, S. & Nocedal, J. (1999). Numerical optimization. Springer Science 35(67–68), 7.Google Scholar