Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T00:43:11.564Z Has data issue: false hasContentIssue false

Eukarya biodiversity in the Thala Hills, East Antarctica

Published online by Cambridge University Press:  26 October 2021

Dzmitry A. Lukashanets*
Affiliation:
Klaipėda University, Marine Research Institute, Universiteto 17, 92294Klaipėda, Lithuania Polish Academy of Sciences, Institute of Oceanology, Powstańców Warszawy 55, 81-712, Sopot, Poland
Peter Convey
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, CambridgeCB3 0ET, UK University of Johannesburg, Department of Zoology, PO Box 524, Auckland Park2006, South Africa
Oleg I. Borodin
Affiliation:
National Academy of Sciences of Belarus, Scientific and Practical Center for Bioresources, Akademicheskaya 27, 220072Minsk, Belarus
Vladislav Ye. Miamin
Affiliation:
National Academy of Sciences of Belarus, Scientific and Practical Center for Bioresources, Akademicheskaya 27, 220072Minsk, Belarus Belarusian State University, Biology Faculty, Nezavisimosti Ave 4, 220030Minsk, Belarus
Yury H. Hihiniak
Affiliation:
National Academy of Sciences of Belarus, Scientific and Practical Center for Bioresources, Akademicheskaya 27, 220072Minsk, Belarus
Alexey A. Gaydashov
Affiliation:
National Academy of Sciences of Belarus, Republican Center for Polar Research, Komsomolskaya 16, 220030Minsk, Belarus
Aleksander P. Yatsyna
Affiliation:
Belarusian State University, Biology Faculty, Nezavisimosti Ave 4, 220030Minsk, Belarus National Academy of Sciences of Belarus, Institute of Experimental Botany, Akademicheskaya 27, 220072Minsk, Belarus
Vasil V. Vezhnavets
Affiliation:
National Academy of Sciences of Belarus, Scientific and Practical Center for Bioresources, Akademicheskaya 27, 220072Minsk, Belarus
Natallia N. Maysak
Affiliation:
National Academy of Sciences of Belarus, Scientific and Practical Center for Bioresources, Akademicheskaya 27, 220072Minsk, Belarus
Tatyana V. Shendrik
Affiliation:
National Academy of Sciences of Belarus, Scientific and Practical Center for Bioresources, Akademicheskaya 27, 220072Minsk, Belarus

Abstract

Knowledge of the biodiversity of the Thala Hills oasis (Enderby Land, East Antarctica) is very limited. Here, we integrate all information available since 1962, when the Russian ‘Molodyozhnaya’ station was established in the western part of the oasis. The published data on local eukaryote diversity (lichens, embryophytes, metazoans) include records of 90 species. Since 2008, Belarusian Antarctic Expedition researchers have worked in the eastern part of the oasis, accessible from the Belarusian station ‘Vechernyaya Mount'. This research revealed 95 species, including 44 species not recorded in the earlier published literature. The level of available information is uneven across major taxa. Lichens are the better-known group, with 51 species recorded in total, including 13 species recently recorded for the first time in the oasis. New records were also obtained for rotifers. Thala Hills biodiversity is consistent with wider patterns of Antarctic biogeography, with a high proportion of regionally endemic species (especially metazoans), the occurrence of both endemic and bipolar species of lichens and generally low numbers of cosmopolitan species (largely limited to aquatic rotifers, with the caveat that up-to-date taxonomic studies are required). The lack of data on marine macrobenthos, soil nematodes and terrestrial rotifers emphasizes the need for studies focusing on these groups.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, M.P. 1990. Lichainiki pribrezhnych oazisov Vostochnoj Antarktidy [Lichens of the coastal oases in East Antarctica]. Novitates Systematicae Plantarum Non Vascularum, 27, 9395.Google Scholar
Andreev, M.P. 2013. Lichainiki oazisa Molodyozhnyi i prilegajushchih territorij (Zemlya Enderbi) [Lichens of the oasis Molodyozhnyi and adjacent areas (Enderby Land)]. Novitates Systematicae Plantarum Non Vascularum, 47, 167178.Google Scholar
Andrews, W.A. ed. 1972. A guide to the study of freshwater ecology. Hoboken, NJ: Prentice Hall, 182 pp.Google Scholar
Andriashev, A.P. 1964. Obshchiy obzor fauny ryb Antarktiki [A general review of the Antarctica fish fauna]. In Pawloswski, Ye.N. & Andriashev, A.P. eds. Rezultaty biologicheskih issledovaniy Sovetskoy Antarkticheskoy Ekspeditsii [Results of the biological studies of the Soviet Antarctic Expedition] 1955–1958 Part 2. Moscow-Leningrad: NAS USSR, 355386.Google Scholar
Bezerra, T.N., Eisendle, U., Hodda, M., Holovachov, O., Leduc, D., et al. 2021a. Nemys: World Database of Nematodes. Ascarophis nototheniae Johnston & Mawson, 1945. Available through World Register of Marine Species at https://www.marinespecies.org/aphia.php?p=taxdetails&id=527928 on 2021-03-29.Google Scholar
Bezerra, T.N., Eisendle, U., Hodda, M., Holovachov, O., Leduc, D., et al. 2021b. Nemys: World Database of Nematodes. Pseudoterranova decipiens (Krabbe, 1878) Gibson, 1983. Available through World Register of Marine Species at https://www.marinespecies.org/aphia.php?p=taxdetails&id=123078 on 2021-03-29.CrossRefGoogle Scholar
Bigatti, G. 2015. Marine Invertebrate from Argentina, Uruguay and Chile. v1.4. ArOBIS Centro Nacional Patagónico. Dataset/Occurrence. Available at http://arobis.cenpat-conicet.gob.ar:8081/resource?r=arobis-marineinvertebrate&v=1.4; https://doi.org/10.15468/xntwha accessed via GBIF.org on 29 March 2021; https://www.gbif.org/occurrence/1328193767.Google Scholar
Bingemer, J. & Hohberg, K. 2017. An illustrated identification key to the Eutardigrade species (Tardigrada, Eutardigrada) presently known from European soils. Soil Organisms, 89, 127149.Google Scholar
Blom, W. & Moriarty, A. 2021. Auckland Museum NZ Marine Collection. Version 1.50. Auckland War Memorial Museum. Occurrence dataset. Available at https://doi.org/10.15468/plyefd accessed via GBIF.org on 29 March 2021.Google Scholar
Brueggeman, P. 1998. Underwater field guide to Ross Island and McMurdo Sound, Antarctica. San Diego, CA: UC San Diego, Scripps Institution of Oceanography Library.Google Scholar
Buchmann, K. 2007. An introduction to fish parasitological methods: classical and molecular techniques. Frederiksberg: Biofolia, 130 pp.Google Scholar
Carapelli, A., Cucini, C., Fanciulli, P.P., Frati, F., Convey, P. & Nardi, F. 2020a. Molecular comparison among three Antarctic endemic springtail species and description of the mitochondrial genome of Friesea gretae (Hexapoda, Collembola). Diversity, 12, 450.CrossRefGoogle Scholar
Carapelli, A., Greenslade, P., Nardi, F., Leo, C., Convey, P., Frati, F. & Fanciulli, P.P. 2020b. Evidence for cryptic diversity in the ‘pan-Antarctic’ springtail Friesea antarctica and the description of two new species. Insects, 11, 141.CrossRefGoogle Scholar
Castello, M. & Nimis, P.L. 1995. The lichen vegetation of Terra Nova Bay (Victoria Land, continental Antarctica). Bibliotheca Lichenologica, 58, 4355.Google Scholar
Castello, M. & Nimis, P.L. 1997. Diversity of lichens in Antarctica. In Battaglia, B., Valencia, J. & Walton, D.W.H. eds. Antarctic communities. Species, structure and survival. Cambridge: Cambridge University Press, 1521.Google Scholar
Chatey, D., Parker, B.C., Simmons, G.M., Yongue, W.N. & Brunt, M.R. 1981. The microfauna of algal mats and artificial substrates in Southern Victoria Land lakes of Antarctica. Hydrobiologia, 85, 315.Google Scholar
Chown, S.L., Lee, J.E., Hughes, K.A., Barnes, J., Barrett, P.J., Bergstrom, D.M., et al. 2012. Challenges to the future conservation of the Antarctic. Science, 337, 158159.CrossRefGoogle Scholar
Collins, N.J. 1969. The effects of volcanic activity on the vegetation of Deception Island. BAS Bulletin, No. 21, 7994.Google Scholar
Conservation of Antarctic Fauna and Flora. 2009. Annex II to the Protocol on Environmental Protection to the Antarctic Treaty. Measure 16 Attachment. Brussels: Conservation of Antarctic Fauna and Flora, 8 pp.Google Scholar
Convey, P. 1996. Overwintering strategies of terrestrial invertebrates from Antarctica - the significance of flexibility in extremely seasonal environments. European Journal of Entomology, 93, 489e505.Google Scholar
Convey, P. 2010. Terrestrial biodiversity in Antarctica - recent advantages and future challenges. Polar Science, 4, 135147.CrossRefGoogle Scholar
Convey, P. & Peck, L.S. 2019. Antarctic environmental changes and biological responses. Science Advances, 11, eaaz0888.CrossRefGoogle Scholar
Convey, P. & Stevens, M.I. 2007. Antarctic biodiversity. Science, 317, 18771878.CrossRefGoogle ScholarPubMed
Convey, P., Biersma, E.M., Casanova-Katny, A. & Maturana, C.S. 2020. Refuges of Antarctic diversity. In Oliva, M. & Ruiz-Fernández, J. eds. Past Antarctica. Burlington, VA: Academic Press, 181200.CrossRefGoogle Scholar
Convey, P., Gibson, J., Hillenbrand, C.D., Hodgson, D.A., Pugh, P J.A., Smellie, J.L. & Stevens, M.I. 2008. Antarctic terrestrial life - challenging the history of the frozen continent? Biological Reviews, 83, 103117.CrossRefGoogle ScholarPubMed
Convey, P., Coulson, S.J., Worland, M.R. & Sjöblom, A. 2018. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils. Polar Biology, 41, 15871605.CrossRefGoogle Scholar
Convey, P., Chown, S.L., Clarke, A., Barnes, D.K.A., Cummings, V., Ducklow, H., et al. 2014. The spatial structure of Antarctic biodiversity. Ecological Monographs, 84, 203244.CrossRefGoogle Scholar
Danis, B., Griffths, H.J. & Jangoux, M. 2014. Asteroidea. In Broyer, De, Koubbi, C., Griffiths, P., Raymond, H.J., Udekem d'Acoz, B., Van de Putte, C., A.P., , et al. eds. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, 200207.Google Scholar
Dartnall, H.J.G. 1993. The rotifers of Macquarie Island. ANARE Research Notes, 89, 141.Google Scholar
Dartnall, H.J.G. 1995a. Rotifers, and other aquatic invertebrates, from the Larsemann Hills, Antarctica. Papers and Proceedings of the Royal Society of Tasmania, 129, 1723.CrossRefGoogle Scholar
Dartnall, H.J.G. 1995b. The rotifers of Heard Island: preliminary survey, with notes on other freshwater groups. Papers and Proceedings of the Royal Society of Tasmania, 129, 715.CrossRefGoogle Scholar
Dartnall, H.J.G. 2000. A limnological reconnaissance of the vestfold hills. ANARE Reports Australian Antarctic Division, 141, 155.Google Scholar
Dartnall, H.J.G. & Hollowday, E.D. 1985. Antarctic rotifers. BAS Scientific Reports, 100, 146.Google Scholar
Dartnall, H.J.G., Hollwedel, H. & de Paggi, J.C. 2005. The freshwater fauna of Macquarie Island, including a redescription of the endemic water-flea Daphnia gelida (Brady) (Anomopoda: Crustacea). Polar Biology, 28, 922939.CrossRefGoogle Scholar
Dastych, H. 1984. The Tardigrada from Antarctic with descriptions of several new species. Acta Zoologica Cracoviensia, 27, 377436.Google Scholar
De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B., Udekem d'Acoz, C. d', Van de Putte, A.P., et al. , eds. 2014. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, 510 pp.Google Scholar
De Smet, W.H. 2001. Freshwater Rotifera from plankton of the Kerguelen Islands (Subantarctica). Hydrobiologia, 446, 261272.CrossRefGoogle Scholar
De Smet, W.H. & Pourriot, R. 1997. Guides to identification of the microinvertebrates of the continental waters of the world. 12. Rotifera. Volume 5. The Dicranophoridae (Monogononta). The Ituridae (Monogononta). The Hague: SPB Academic Publishing, 344 pp.Google Scholar
Del Hoyo, J., Elliot, A. & Sargatal, J. 1992. Handbook of the birds of the world, Vol. 1: ostrich to ducks. Barcelona: Lynx Edicions, 696 pp.Google Scholar
Dewitt, H.H., Heemstra, P.C. & Gon, O. 1990. Nototheniidae. In Gon, O. & Heemstra, P.C., eds. Fishes of the Southern Ocean. Grahamstown: J.L.B. Smith Institute of Ichthyology, 279331.Google Scholar
Dolgikh, A.V., Mergelov, N.S., Abramov, A.A., Lupachev, A.V. & Goryachkin, S.V. 2015. Soils of Enderby Land. In Bockheim, J.G. ed. Soils of Antarctica. Berlin: Springer International Publishing, 4563.CrossRefGoogle Scholar
Donner, J. 1965. Ordnung Bdelloidea (Rotatoria, Rädertiere). Bestimmungsbücher zur Bodenfauna Europas. Berlin: Akademie, 297 pp.Google Scholar
Duhamel, G., Hulley, P. A., Causse, R., Koubbi, P., Vacchi, M., Belchier, M., et al. 2014. Biogeographic patterns of fishes. In Broyer, De, Koubbi, C., Griffiths, P., Raymond, H.J., Udekem d'Acoz, B., Van de Putte, C., A.P., ., et al. eds. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, 364387.Google Scholar
Everitt, D.A. 1981. An ecological study of an Antarctic freshwater pool with particular reference to Tardigrada and Rotifera. Hydrobiologia, 83, 225237.CrossRefGoogle Scholar
Filson, R.B. 1975. Studies in Antarctic lichens. V. Lichenes Antarctici Exiccati, Fascicle I, with additional notes on the taxonomy of each species. Muelleria, 3, 146158.Google Scholar
Fischer, W. 1985. FAO species identification sheets for fishery purposes. Southern Ocean. Volume II. Rome: FAO of the UN, 471 pp.Google Scholar
Fraser, C.I., Nikula, R., Ruzzante, D.E. & Waters, J.M. 2012. Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends in Ecology & Evolution, 27, 462471.CrossRefGoogle ScholarPubMed
Golubkova, N.S., Savich, V.P. & Simonov, I.M. 1969. Lichainiki zapadnoi chasti Zemli Enderbi [Lichens of the western part of Enderby Land]. Proceedings of the Soviet Antarctic Expedition, 38, 247253.Google Scholar
Gon, O. 1990. Bathydraconidae. In Gon, O. & Heemstra, P.C., eds. Fishes of the Southern Ocean. Grahamstown: J.L.B. Smith Institute of Ichthyology, 364380.Google Scholar
Green, T.G.A., Sancho, L.G., Türk, R., Seppelt, R.D. & Hohh, I.D. 2011. High diversity of lichens at 84°S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica. Polar Biology, 34, 12111220.CrossRefGoogle Scholar
Greenslade, P. 2018a. A new species of Friesea (Collembola: Neanuridae) from the Antarctic Continent. Journal of Natural History, 52, 21972207.CrossRefGoogle Scholar
Greenslade, P. 2018b. An Antarctic biogeographical anomaly resolved: the true identity of a widespread species of Collembola. Polar Biology, 41, 969981.CrossRefGoogle Scholar
Gruzov, Ye.N. & Pushkin, A.F. 1973. Rezultaty podvodnyh gidrobiologicheskih issledovaniy [Results of underwater hydrobiological studies]. Proceedings of the Soviet Antarctic Expedition, 56, 125134.Google Scholar
Hansson, L.A., Hylander, S., Dartnall, H.J.G., Lidström, S. & Svensson, J.E. 2012. High zooplankton diversity in the extreme environments of the McMurdo Dry Valley lakes, Antarctica. Antarctic Science, 24, 131138.CrossRefGoogle Scholar
Häussermann, V. & Försterra, G. 2009. Marine benthic fauna of Chilean Patagonia. Santiago: Nature in Focus, 1000 pp.Google Scholar
Hibbert, T. & Moore, K. 2009. Field identification guide to Heard Island and McDonald Islands benthic invertebrates. A guide for scientific observers aboard fishing vessels. Kingston: Australian Antarctic Division, 159 pp.Google Scholar
Iakovenko, N.S., Kašparová, E., Plewka, M. & Janko, K. 2013. Otostephanos (Rotifera, Bdelloidea, Habrotrochidae) with the description of two new species. Systematics and Biodiversity, 24, 113. dGoogle Scholar
Iakovenko, N.S., Smykla, J., Convey, P., Kašparová, E., Kozeretska, I.A., Trokhymets, V., et al. 2015. Antarctic bdelloid rotifers: diversity, endemism and evolution. Hydrobiologia, 761, 543.CrossRefGoogle Scholar
Jakubowski, M. 1970. Morphological features of the lateral line organs in members of the Antarctic genus Trematomus Boul. (Nototheniidae, Pisces). Journal of Ichthyology, 10, 268271.Google Scholar
Jakubowski, M. 1975. Anatomical structure of olfactory organs provided with internal nares in the Antarctic fish Gymnodraco acuticeps Boul. (Bathydraconidae). Bulletin of the Polish Academy of Sciences, 23, 115120.Google Scholar
Jakubowski, M. & Rembiszewski, J. M. 1974. Vascularization and size of respiratory surfaces of gills and skin in the Antarctic fish Gymnodraco acuticeps Boul. (Bathydraconidae). Bulletin of the Polish Academy of Sciences: Biological Sciences, 22, 305–313.Google Scholar
Kanda, H. & Inoue, M. 1994. Ecological monitoring of moss and lichen vegetation in the Syowa station area, Antarctica. Proceedings of NIPR Symposium on Polar Biology, 7, 221231.Google Scholar
Klekowski, R.Z., Opaliński, K.W. & Rakusa-Suszczewski, S. 1973. Respiration of Antarctic amphipod Paramoera walkeri Stebbing during the winter season. Polish Archive of Hydrobiology, 20, 301308.Google Scholar
Kurbatova, L.Ye., Andreev, M.P. & Dolgikh, A.V. 2014. Mhi oazisa Moloduozhyi (Zemlya Enderby, Antarctica) [Bryophytes of the oasis Molodyoznyi (Enderby Land, Antarctica)]. Novitates systematicas plantarum non-vascularium, 48, 365373.Google Scholar
Kutikova, L.A. 1970. Kolovratki fauny SSSR. Chast V. Podklass Eurotatoria (Otriady Ploimida, Monimotrochida, Paedotrochida) [Rotifers in the fauna of USSR. Part V. Subclass Eurotatoria (Orders Ploimida, Monimotrochida, Paedotrochida)]. St Petersburg: Science, 744 pp.Google Scholar
Kutikova, L.A. 1991. Kolovratki vnutrennih vod Vostochnoj Antarktidy [Rotifers of the inland waters of East Antarctica]. Soviet Antarctic Expedition Information Bulletin, 116, 8799.Google Scholar
Kutikova, L.A. 2005. Bdelloidnye kolovratki fauny Rossii [Bdelloid rotifers in the fauna of Russia]. Moscow: The Community of Scientific Publications KMK, 315 pp.Google Scholar
MacNamara, E.E. 1969. Pedology of Enderby land, Antarctica. Antarctic Journal of the USA, 4, 208209.Google Scholar
Mah, C.L. 2021. World Asteroidea Database. Odontaster validus Koehler, 1906. Available through World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=172775 on 29 March 2021.Google Scholar
McCarthy, P.M. & Elis, J.A. 2014. The lichen genus Rhizocarpon in mainland Australia. Telopea, 16, 195211.CrossRefGoogle Scholar
McMillan, P.J., Marriott, P., Hanchet, S.M., Fenaughty, J.M., Mackay, E., Sui, H. & Wei, F. 2014. Fishes of the Ross Sea Region: a field guide to common species caught in the longline fishery. New Zealand Aquatic Environment and Biodiversity Report No. 134. Wellington: Ministry for Primary Industries, 54 pp.Google Scholar
Nayaka, S. & Upreti, D. K. 2005. Schirmacher Oasis, East Antarctica, a lichenologically interesting region. Current Science, 89, 10691071.Google Scholar
Nogrady, Th., Poirrot, R. & Segers, H. 1995. Guides to identification of the microinvertebrates of the continental waters of the world. 8. Rotifera. Volume 3. The Notommatidae. The Scaridiidae. The Hague: SPB Academic Publishing, 249 pp.Google Scholar
Ochyra, R. & Singh, S.M. 2008. Three remarkable moss records from Dronning Maud Land, continental Antarctica. Nova Hedwigia, 86, 497506.CrossRefGoogle Scholar
Ochyra, R., Bernadek-Ochyra, H. & Smith, R.I.L 2008a. New and rare moss species from the Antarctic. Nova Hedwigia, 87, 457477.CrossRefGoogle Scholar
Ochyra, R., Smith, R.I.L & Bendarek-Ochyra, H. 2008b. Illustrated moss flora of Antarctica. Cambridge: Cambridge University Press, 704 pp.Google Scholar
Opaliński, K. 1972. Flora and fauna in freshwater bodies of the Thala Hills oasis (Enderby Land, Eastern Antarctica). Polish Archive of Hydrobiology, 19, 383398.Google Scholar
Opaliński, K.W. 1974. Standard, routine, and active metabolism of the Antarctic amphipod - Paramoera walkeri Stebbing. Polish Archive of Hydrobiology, 21, 423429.Google Scholar
Orrell, T. 2021. NMNH Extant Specimen Records. Version 1.42. National Museum of Natural History, Smithsonian Institution. Occurrence dataset. Available at https://doi.org/10.15468/hnhrg3 accessed via GBIF.org on 29 March 2021.Google Scholar
Øvstedal, D.O. & Smith, R.I.L 2001. Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge: Cambridge University Press, 411 pp.Google Scholar
Pandey, V. & Upreti, D.K. 2000. Lichen flora of Schirmacher oasis and Vettiyya nunatak. In XVth Indian Expedition to Antarctica, Scientific Report. Department of Ocean Development, New Delhi: 185–201.Google Scholar
Peat, H.J., Clarke, A. & Convey, P. 2007. Diversity and biogeography of the Antarctic flora. Journal of Biogeography, 34, 132146.CrossRefGoogle Scholar
Pilato, G. & Binda, M.G. 2010. Definition of families, subfamilies, genera and subgenera of the Eutardigrada, and keys to their identification. Zootaxa, 2404, 154.CrossRefGoogle Scholar
Pugh, P.J.A. & Convey, P. 2008. Surviving out in the cold: Antarctic endemic invertebrates and their refugia. Journal of Biogeography, 35, 21762186.CrossRefGoogle Scholar
Rai, H., Khare, R., Nayaka, S., Upreti, D.K. & Gupta, R. K. 2011. Lichen synusiae in East Antarctica (Schirmacher Oasis and Larsemann Hills): substratum and morphological preferences. Czech Polar Reports, 1, 6577.CrossRefGoogle Scholar
Rakusa-Suszczewski, S. 1972a. Respiration of the Antarctic fish eggs (Trematomus borchgrevinki Boul.). Polish Archive of Hydrobiology, 19, 399401.Google Scholar
Rakusa-Suszczewski, S. 1972b. The biology of Paramoera walkeri Stebbing (Amphipoda) and the Antarctic sub-fast ice community. Polish Archive of Hydrobiology, 19, 1136.Google Scholar
Rakusa-Suszczewski, S. & Klekowski, R.Z. 1973. Biology and respiration of Antarctic Amphipoda (Paramoera walkeri Stebbing) in the summer. Polish Archive of Hydrobiology, 20, 475488.Google Scholar
Ramazzotti, G. & Maucci, W. 1983. Phylum Tardigrada. Memorie dell'istituto Italiano di idrobiologia, 41, 11012.Google Scholar
Rauschert, M. & Arntz, W. E. 2015. Antarctic macrobenthos. A field guide of the invertebrates living at the Antarctic seafloor. Bremen: Druckerei Girzig+Gottschalk GmbH, 161 pp.Google Scholar
Read, G. & Fauchald, K., eds. 2021. World Polychaeta Database. Serpula narconensis Baird, 1864. Available through World Register of Marine Species at https://www.marinespecies.org/aphia.php?p=taxdetails&id=174663 on 29 March 2021.Google Scholar
Rocka, A. 2006. Helminths of Antarctic fishes: life cycle biology, specificity and geographical distribution. Acta Parasitologica, 51, 2635.CrossRefGoogle Scholar
Rogers, A.D., Johnston, N.M., Murphy, E.J. & Clarke, A. 2012. Antarctic ecosystems: an extreme environment in a changing world. Oxford: Wiley-Blackwell, 538 pp.CrossRefGoogle Scholar
Ropert-Coudert, Y., Hindell, M.A., Phillips, R., Charrassin, J.B., Trudelle, L. & Raymond, B. 2014. Biogeographic patterns of birds and mammals. In De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B., Udekem d'Acoz, C., Van de Putte, A.P., et al. , eds. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, 364387.Google Scholar
Saucede, T., Pierrat, B. & David, B. 2014. Echinoids. In Broyer, De, Koubbi, C., Griffiths, P., Raymond, H.J., Udekem d'Acoz, B., Van de Putte, C., A.P., , et al. eds. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, 213220.Google Scholar
Savicz-Lyubitskaya L.I. & Smirnova Z.N. 1972. Bryum algens Card. = naibolee obyknovenny moh Vostochnoy Antarktidy [Bryum algens Card. - the most common moss in East Antarctica]. Proceedings of the Soviet Antarctic Expedition, 60, 328345.Google Scholar
SCAR. 2018. Environmental Code of Conduct for Terrestrial Scientific Field Research in Antarctica. Resolution 5 Annex. Cambridge: Scientific Committee on Antarctic Research, 6 pp.Google Scholar
Schwoerbel, J. 1972. Methods of hydrobiology. 1st edition. Freshwater ecology. Oxford: Pergamon Press, 210 pp.Google Scholar
Sharov, A.N., Berezina, N.A. & Tolstikov, A.V. 2015. Life under ice in the perennial ice-covered Lake Glubokoe in summer (eastern Antarctica). Lakes and Reservoirs: Research and Management, 20, 120127.CrossRefGoogle Scholar
Short, K. 2021. Life in the extreme: when did tardigrades colonise Antarctica? PhD thesis, University of Bristol, 205 pp.Google Scholar
Simonov, I.M. 1971. Oazisy Vostochnoj Antarktidy [East Antarctic Oases]. Leningrad: Hydrometeoizdat, 176 pp.Google Scholar
Singh, S.M. & Nayaka, S. 2017. Contributions to the floral diversity of Schirmacher Oasis and Larsemann Hills, Antarctica. Proceedings of the Indian National Science Academy, 83, 469481.Google Scholar
Singh, S.M., Nayaka, S. & Upreti, D.K. 2007. Lichen communities in Larsemann Hills, East Antarctica. Current Science, 93, 16701672.Google Scholar
Singh, S.M., Olech, M., Cannone, N. & Convey, P. 2015. Contrasting patterns in lichen diversity in the Continental and Maritime Antarctic. Polar Science, 9, 311318.CrossRefGoogle Scholar
Sirenko, B.I., Gagaev, S.Yu. & Smirnov, I.S. eds. 2017. Vidovoe raznoobrazie bioty b rasprostranenie lonnyh soobshchestv Zaliva Priuds, More Sodruzhestva (Vostochnaya Antarktida) [The biota species diversity and the distribution of the bottom communities in Prydz Bay, Commonwealth Sea (East Antarctica)]. St Petersburg: RAS, 274 pp.Google Scholar
Smith, R.I.L. 1984. Colonization by bryophytes following recent volcanic activity on an Antarctic island. Journal of the Hattori Botanical Laboratory, 56, 5363.Google Scholar
Smith, R.I.L. 1988. Classification and ordination of cryptogamic communities in Wilkes Land, Continental Antarctica. Vegetatio, 76, 155166.Google Scholar
Smith, R.I.L. 2005. The thermophilic bryoflora of Deception Island: unique plant communities as a criterion for designating an Antarctic Specially Protected Area. Antarctic Science, 17, 1727.CrossRefGoogle Scholar
Smykla, K., Krzewicka, B., Wilk, K., Emslie, S.D. & Sliwa, L. 2011. Additions to the lichen flora of Victoria Land, Antarctica. Polish Polar Research, 32, 123138.CrossRefGoogle Scholar
Sohlenius, B. & Boström, S. 2005. The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biology, 28, 439448.CrossRefGoogle Scholar
Sohlenius, B., Boström, S. & Hirschfelder, A. 1995. Nematodes, rotifers and tardigrades from nunataks in Dronning Maud Land, East Antarctica. Polar Biology, 15, 5156.CrossRefGoogle Scholar
Speilmann, A.A. & Pereira, A.B. 2012. Lichens on the Maritime Antarctica (a small field guide for some common species). Glalia, 4, 128.Google Scholar
Starmach, K. 1995. Freshwater algae of the Thala Hills oasis (Enderby Land, East Antarctic). Polish Polar Research, 16, 113148.Google Scholar
Stöhr, S., O'Hara, T. & Thuy, B., eds. 2020. World Ophiuroidea Database. Ophiosparte gigas Koehler, 1922. Available through World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=173270 on 8 July 2020.Google Scholar
Strandtmann, R.W. 1967. Terrestrial Prostigmata (Turbidiform mites). Antarctic Research Studies, 10, 5180.Google Scholar
Suren, A. 1990. Microfauna associated with algal mats in meltwater ponds of the Ross Ice Shelf. Polar Biology, 10, 329335.CrossRefGoogle Scholar
Tsujimoto, M., McInnes, S.J., Convey, P. & Imura, S. 2014. Preliminary description of tardigrade species diversity and distribution pattern around coastal Syowa Station and inland Sør Rondane Mountains, Dronning Maud Land, East Antarctica. Polar Biology, 37, 13611367.CrossRefGoogle Scholar
Usher, M.B. & Booth, R.G. 1984. Arthropod communities in a maritime Antarctic moss-turf habitat: three-dimensional distribution of mites and collembola. Journal of Animal Ecology, 53, 427441.CrossRefGoogle Scholar
Utsugi, K. & Ohyama, Y. 1991. Antarctic Tardigrada II. Molodezhnaya and Mt. Riiser-Larsen areas. Proceedings of the NIPR Symposium on Polar Biology, 4, 161170.Google Scholar
Webster-Brown, J., Gall, M., Gibson, J.A.E., Wood, S. & Hawes, I. 2010. The biogeochemistry of meltwaterwater habitats in the Darwin Glacier region (80 S), Victoria Land, Antarctica. Antarctic Science, 22, 646661.CrossRefGoogle Scholar
Wise, K.A.J. 1971. The Collembola of Antarctica. Pacific Insects Monograph, 25, 5774.Google Scholar
WoRMS. 2021a. Contracaecum osculatum (Rudolphi, 1802) Baylis, 1920. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=122907 on 29 March 2021.Google Scholar
WoRMS. 2021b. Contracaecum radiatum (Linstow, 1907) Baylis, 1920. Available at https://www.marinespecies.org/aphia.php?p=taxdetails&id=527911 on 29 March 2021.Google Scholar
Supplementary material: File

Lukashanets et al. supplementary material

Lukashanets et al. supplementary material

Download Lukashanets et al. supplementary material(File)
File 31.4 KB