Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T08:46:50.264Z Has data issue: false hasContentIssue false

LIFE HISTORIES OFFER A CLUE TO THE FUTURE OF INFECTIOUS DISEASE ON CORAL REEFS

Published online by Cambridge University Press:  04 February 2013

L. YAKOB*
Affiliation:
School of Population Health, University of Queensland, Herston, QLD 4006, Australia
P. J. MUMBY
Affiliation:
School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Increased frequency and severity of stressors associated with climate change are drastically altering ecosystems. Caribbean coral reefs differ markedly from just 30 years ago, with much restructuring attributable to infectious disease outbreaks. Using a classic epidemiological approach, we demonstrate how density-dependent demographic rates serve as a mechanism for intrinsic coral resilience to population perturbations arising from disturbances such as disease. We explore the impact of allowing infection status to influence demographic rates and ascertain outbreak thresholds that are corroborated by epizootic patterns observed in the field. We discuss how our threshold calculations may provide metrics of coral epizootic early warning systems. Integrating our infection model with equations describing the interspecific competition for space between coral and macroalgae, we provide new mechanistic understanding of the influence that coral life history dynamism and infectious disease have on the changing face of these threatened ecosystems.

MSC classification

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Society 

References

Anderson, R. M., May, R. M., Joysey, K., Mollison, D., Conway, G. R., Cartwell, R., Thompson, H. V. and Dixon, B., “The invasion, persistence and spread of infectious diseases within animal and plant communities [and discussion]”, Philos. Trans. R. Soc. Lond. B 314 (1986) 533570; doi:10.1098/rstb.1986.0072.Google ScholarPubMed
Baird, A. H., Cumbo, V. R., Leggat, W. and Rodriguez-Lanetty, M., “Fidelity and flexibility in coral symbioses”, Mar. Ecol. Prog. Ser. 347 (2007) 307309; doi:10.3354/meps07220.CrossRefGoogle Scholar
Bak, R. P. M. and Meesters, E. H., “Population structure as a response of coral communities to global change”, Amer. Zool. 39 (1999) 5665; doi:10.1093/icb/39.1.56.CrossRefGoogle Scholar
Brook, B. W. and Bradshaw, C. J. A., “Strength of evidence for density dependence in abundance time series of 1198 species”, Ecology 87 (2006) 14451451; doi:10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2.CrossRefGoogle ScholarPubMed
Bruckner, A. W. and Bruckner, R. J., “Condition of coral reefs off less developed coastlines of Curaçao (Part 1: Stony corals and algae)”, Atoll. Res. Bull. 496 (2003) 370393; http://www.sil.si.edu/digitalcollections/atollresearchbulletin/issues/00496.21x.pdf.CrossRefGoogle Scholar
Bruno, J. F., Selig, E. R., Casey, K. S., Page, C. A., Willis, B. L., Harvell, C. D., Sweatman, H. and Melendy, A. M., “Thermal stress and coral cover as drivers of coral disease outbreaks”, PLoS Biol. 5 (2007) e124; doi:10.1371/journal.pbio.0050124.CrossRefGoogle ScholarPubMed
Bythell, J. and Sheppard, C., “Mass mortality of Caribbean shallow corals”, Mar. Pollut. Bull. 26 (1993) 296297; doi:10.1016/0025-326X(93)90569-6.Google Scholar
Castillo, K. D. and Helmuth, B. S. T., “Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure”, Mar. Biol. 148 (2005) 261270; doi:10.1007/s00227-005-0046-x.CrossRefGoogle Scholar
Charmantier, A., McCleery, R. H., Cole, L. R., Perrins, C., Kruuk, L. E. B. and Sheldon, B. C., “Adaptive phenotypic plasticity in response to climate change in a wild bird population”, Science 320 (2008) 800803; doi:10.1126/science.1157174.CrossRefGoogle Scholar
Colgan, M. W., “Coral reef recovery on Guam (Micronesia) after catastrophic predation by Acanthaster planci”, Ecology 68 (1987) 15921605; doi:10.2307/1939851.CrossRefGoogle ScholarPubMed
Díaz, M. and Madin, J., “Macroecological relationships between coral species’ traits and disease potential”, Coral Reefs 30 (2011) 7384; doi:10.1007/s00338-010-0668-4.CrossRefGoogle Scholar
Diekmann, O. and Heesterbeck, J. A. P., Mathematical epidemiology of infectious diseases: model building, analysis and interpretation (Wiley, New York, 2002).Google Scholar
Edmunds, P., “Recruitment of scleractinians onto the skeletons of corals killed by black band disease”, Coral Reefs 19 (2000) 6974; doi:10.1007/s003380050229.CrossRefGoogle Scholar
Edmunds, P. J. and Elahi, R., “The demographics of a 15-year decline in cover of the Caribbean reef coral Montastraea annularis”, Ecol. Monogr. 77 (2007) 318; doi:10.1890/05-1081.CrossRefGoogle Scholar
Fordham, D. A., Georges, A. and Brook, B. W., “Experimental evidence for density-dependent responses to mortality of snake-necked turtles”, Oecologia 159 (2008) 271281; doi:10.1007/s00442-008-1217-5.CrossRefGoogle ScholarPubMed
Foster, N. L., Baums, I. B. and Mumby, P. J., “Sexual vs. asexual reproduction in an ecosystem engineer: the massive coral Montastraea annularis”, J. Anim. Ecol. 76 (2007) 384391; doi:10.1111/j.1365-2656.2006.01207.x.CrossRefGoogle Scholar
Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. and Watkinson, A. R., “Long-term region-wide declines in Caribbean corals”, Science 301 (2003) 958960; doi:10.1126/science.1086050.CrossRefGoogle ScholarPubMed
Green, D. H., Edmunds, P. J. and Carpenter, R. C., “Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover”, Mar. Ecol. Prog. Ser. 359 (2008) 110; doi:10.3354/meps07454.CrossRefGoogle Scholar
Greenstein, B. J. and Pandolfi, J. M., “Escaping the heat: range shifts of reef coral taxa in coastal Western Australia”, Global Change Biol. 14 (2008) 513528; doi:10.1111/j.1365-2486.2007.01506.x.CrossRefGoogle Scholar
Harvell, C. D. et al. , “Emerging marine diseases–climate links and anthropogenic factors”, Science 285 (1999) 15051510; doi:10.1126/science.285.5433.1505.CrossRefGoogle ScholarPubMed
Hughes, T. P., “Life histories and population dynamics of early successional corals”, Proc. 5th Internat. Coral Reef Congress 4 (1985) 101106; http://www.reefbase.org/download/download.aspx?type=1&docid=10023.Google Scholar
Hughes, T. P., “Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef”, Science 265 (1994) 15471551; doi:10.1126/science.265.5178.1547.CrossRefGoogle ScholarPubMed
Hughes, T. P. et al. , “Climate change, human impacts, and the resilience of coral reefs”, Science 301 (2003) 929933; doi:10.1126/science.1085046.CrossRefGoogle ScholarPubMed
Hughes, T. P. and Jackson, J. B. C., “Do corals lie about their age? Some demographic consequences of partial mortality, fission, and fusion”, Science 209 (1980) 713715; doi:10.1126/science.209.4457.713.CrossRefGoogle ScholarPubMed
Hughes, T. P. and Jackson, J. B. C., “Population dynamics and life histories of foliaceous corals”, Ecol. Monogr. 55 (1985) 141166; doi:10.2307/1942555.CrossRefGoogle Scholar
Hughes, T. P. and Tanner, J. E., “Recruitment failure, life histories, and long-term decline of Caribbean corals”, Ecology 81 (2000) 22502263; doi:10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2.CrossRefGoogle Scholar
Knowlton, N., “The future of coral reefs”, Proc. Natl. Acad. Sci. 98 (2001) 54195425; doi:10.1073/pnas.091092998.CrossRefGoogle ScholarPubMed
McCallum, H., Harvell, D. and Dobson, A., “Rates of spread of marine pathogens”, Ecol. Lett. 6 (2003) 10621067; doi:10.1046/j.1461-0248.2003.00545.x.CrossRefGoogle Scholar
McClanahan, T. R. and Muthiga, N. A., “An ecological shift in a remote coral atoll of Belize over 25 years”, Environ. Conserv. 25 (1998) 122130; doi:10.1017/S0376892998000174.CrossRefGoogle Scholar
Meesters, E. H., Hilterman, M., Kardinaal, E., Keetman, M., deVries, M. and Bak, R. P. M., “Colony size-frequency distributions of scleractinian coral populations: spatial and interspecific variation”, Mar. Ecol. Prog. Ser. 209 (2001) 4354; doi:10.3354/meps209043.CrossRefGoogle Scholar
Meesters, E. H., Wesseling, I. and Bak, R. P. M., “Coral colony tissue damage in six species of reef-building corals: Partial mortality in relation with depth and surface area”, J. Sea Res. 37 (1997) 131144; doi:10.1016/S1385-1101(96)00004-4.CrossRefGoogle Scholar
Mumby, P. J., Hastings, A. and Edwards, H. J., “Thresholds and the resilience of Caribbean coral reefs”, Nature 450 (2007) 98101; doi:10.1038/nature06252.CrossRefGoogle ScholarPubMed
Mumby, P. J. and Steneck, R. S., “Coral reef management and conservation in light of rapidly evolving ecological paradigms”, Trends Ecol. Evol. 23 (2008) 555563; doi:10.1016/j.tree.2008.06.011.CrossRefGoogle ScholarPubMed
Musick, J. A. (ed.) Life in the slow lane: ecology and conservation of long-lived marine animals, Volume 23 of American Fisheries Society Symposium (American Fisheries Society, Bethesda, MD, 1999).CrossRefGoogle Scholar
Parmesan, C. and Yohe, G., “A globally coherent fingerprint of climate change impacts across natural systems”, Nature 421 (2003) 3742; doi:10.1038/nature01286.CrossRefGoogle ScholarPubMed
Raymundo, L. J., Halford, A. R., Maypa, A. P. and Kerr, A. M., “Functionally diverse reef-fish communities ameliorate coral disease”, Proc. Natl. Acad. Sci. 106 (2009) 1706717070; doi:10.1073/pnas.0900365106.CrossRefGoogle ScholarPubMed
Reed, K. C., Muller, E. M. and van Woesik, R., “Coral immunology and resistance to disease”, Dis. Aquat. Organ. 90 (2010) 8592; doi:10.3354/dao02213.CrossRefGoogle ScholarPubMed
Richardson, L. L. and Aronson, R. B., “Infectious diseases of reef corals”, Proc. 9th Internat. Coral Reef Symp. 2 (2000) 12251231; http://www.reefbase.org/download/download.aspx?type=1&docid=11799.Google Scholar
Rogers, C., “Coral bleaching and disease should not be underestimated as causes of Caribbean coral reef decline”, Proc. R. Soc. Lond. B 276 (2009) 197198; doi:10.1098/rspb.2008.0606.Google Scholar
Rosenberg, E., Koren, O., Reshef, L., Efrony, R. and Zilber-Rosenberg, I., “The role of microorganisms in coral health, disease and evolution”, Nature Rev. Microbiol. 5 (2007) 355362; doi:10.1038/nrmicro1635.CrossRefGoogle ScholarPubMed
Soong, K., “Colony size as a species character in massive reef corals”, Coral Reefs 12 (1993) 7783; doi:10.1007/BF00302106.CrossRefGoogle Scholar
Steneck, R. S., “Is herbivore loss more damaging to reefs than hurricanes? Case studies from two Caribbean reef systems (1978–1988)”, Proc. Colloq. Global Aspects of Coral Reefs: Health, Hazards, and History (1994) 220226.Google Scholar
Tanner, J. E., “Competition between scleractinian corals and macroalgae: an experimental investigation of coral growth, survival and reproduction”, J. Exp. Mar. Biol. Ecol. 190 (1995) 151168; doi:10.1016/0022-0981(95)00027-O.CrossRefGoogle Scholar
Thomas, C., “Recent evolutionary effects of climate change”, in: Climate change and biodiversity (eds Lovejoy, T. and Hannah, L.), (Yale University Press, New Haven, CT, 2005), 7590.Google Scholar
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F., “Ecological responses to recent climate change”, Nature 416 (2002) 389395; doi:10.1038/416389a.CrossRefGoogle ScholarPubMed
Weil, E. and Cróquer, A., “Spatial variability in distribution and prevalence of Caribbean scleractinian coral and octocoral diseases. I. Community-level analysis”, Dis. Aquat. Organ. 83 (2009) 195208; doi:10.3354/dao02011.CrossRefGoogle Scholar
Yakob, L. and Mumby, P. J., “Climate change induces demographic resistance to disease in novel coral assemblages”, Proc. Natl. Acad. Sci. 108 (2011) 19671969; doi:10.1073/pnas.1015443108.CrossRefGoogle ScholarPubMed