Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T23:09:04.531Z Has data issue: false hasContentIssue false

Do cannibalistic fish forage optimally? An experimental study of prey size preference, bioenergetics of cannibalism and their ontogenetic variations in the African catfish Heterobranchus longifilis

Published online by Cambridge University Press:  06 November 2014

Get access

Abstract

This study relied on the day-by-day analysis of bioenergetics and prey size preference in isolated cannibals of the African catfish Heterobranchus longifilis (13–57 mm standard length, 3–500 mg dry body mass, n = 153) that were offered ad libitum conspecific prey of adequate sizes in small-sized (2-L) environments under controlled conditions (12L:12D, 30 °C). In these conditions, cannibals of increasing body size selected preferentially prey of decreasing size relative to their own, and increasingly closer to the optimal prey size (producing the highest gross conversion efficiency). The role of experience in cannibalism was found of secondary importance relative to body size, both as regards food intake and prey size selectivity. These results indicate that in environments that minimize the escape capacities of their potential victims, as applies to most aquacultural contexts, fish exercising cannibalism tend to forage optimally, which has rarely been evidenced for piscivorous behaviour. The present study further highlights that H. longifilis possesses a very high capacity for growth, which originates from the combination of high food intake and very high conversion efficiency, and makes this species of utmost interest for aquaculturists wherever fast growth is desirable, but also extremely prone to cannibalism wherever feeding schedules are inadequate.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amundsen, P.-A., Damsgard, B., Arnesen, A.M., Jobling, M., Jorgensen, E.H., 1995, Experimental evidence of cannibalism and prey specialization in Arctic charr, Salvelinus alpinus. Environ. Biol. Fishes 43, 285293. CrossRefGoogle Scholar
AOAC International, 1995, Official Methods of Analysis of AOAC International. Arlington VA, AOAC International.
Atse, B.C., Konan, K.J., Alla, Y.L., Pangini, K., 2009, Effect of rearing density and feeding regimes on growth and survival of African catfish Heterobranchus longifilis (Valenciennes, 1840) larvae in a closed recirculating aquaculture system. J. Appl. Aquac. 21, 193195. CrossRefGoogle Scholar
Azaza, M.S., Dhraief, M.N., Kraiem, M.M., Baras, E., 2010, Influences of food particle size on growth, size heterogeneity, food intake and gastric evacuation in juvenile Nile tilapia, Oreochromis niloticus L., 1758. Aquaculture 309, 193202. CrossRefGoogle Scholar
Baras, E., 1999, Sibling cannibalism among juvenile vundu under controlled conditions: I. Cannibalistic behaviour, prey selection and prey size selectivity. J. Fish Biol. 54, 82105. CrossRefGoogle Scholar
Baras E., 2013, Cannibalism in fish larvae: what have we learned? In: Qin J.G. (Ed.), Larval Fish Aquaculture. New York: Nova Publishers, pp. 167–199.
Baras, E., Hafsaridewi, R., Slembrouck, J., Priyadi, A., Moreau, Y., Pouyaud, L., Legendre, M., 2010, Why is cannibalism so rare among cultured larvae and juveniles of Pangasius djambal ? Morphological, behavioural and energetic answers. Aquaculture 305, 4251. CrossRefGoogle Scholar
Baras, E., Hafsaridewi, R., Slembrouck, J., Priyadi, A., Moreau, Y., Pouyaud, L., 2013, Do cannibalistic fish possess an intrinsic higher growth capacity than others? A case study in the Asian redtail catfish Hemibagrus nemurus (Valenciennes, 1840). Aquac. Res. 45, 6879. CrossRefGoogle Scholar
Baras, E., Jobling, M., 2002, Dynamics of intracohort cannibalism in cultured fish. Aquac. Res. 33, 461479. CrossRefGoogle Scholar
Baras, E., Lucas, M.C., 2010, Individual growth trajectories of sibling Brycon moorei raised in isolation, and their relationship with aggressive behavior. J. Fish Biol. 77, 985997. CrossRefGoogle Scholar
Baras, E., Ndao, M., Maxi, M.Y.J., Jeandrain, D., Thomé, J.P., Vandewalle, P., Mélard, C., 2000, Sibling cannibalism in dorada under experimental conditions. I. Ontogeny, dynamics, bioenergetics of cannibalism and prey selectivity. J. Fish Biol. 57, 10011020. Google Scholar
Baras, E., Silva del Aguila, D.V., Montalvan Naranjos, G.V., Dugué, R., Chu Koo, F., Duponchelle, F., Renno, J.F., Garcia-Dávila, C., Nuñez, J., 2011, How many meals a day to minimize cannibalism when rearing larvae of the Amazonian catfish Pseudoplatystoma punctifer? The cannibal’s point of view. Aquat. Living Resour. 24, 379390. CrossRefGoogle Scholar
Baras, E., Tissier, F., Philippart, J.-C., Mélard, C., 1999, Sibling cannibalism among juvenile vundu under controlled conditions. II. Effect of body weight and environmental variables on periodicity and the intensity of type II cannibalism. J. Fish Biol. 54, 106118. Google Scholar
Brabrand, A., 1995, Intracohort cannibalism among larval stages of perch (Perca fluviatilis). Ecol. Freshw. Fish 4, 7076. CrossRefGoogle Scholar
Canale, R.P., Breck, J.E., 2013, Comments on proper (and improper) solutions of bioenergetic equations for modelling fish growth. Aquaculture 404-405, 4146. CrossRefGoogle Scholar
Checkley, D.M. Jr., 1984, Relation of growth to ingestion for larvae of Atlantic herring Clupea harengus and other fish. Mar. Ecol. Prog. Ser. 18, 215224. CrossRefGoogle Scholar
Croy, M.I., Hughes, R.N., 1991, The role of learning and memory in the feeding behaviour of the fifteen-spined stickleback (Spinachia spinachia L.). Anim. Behav. 41, 161170. CrossRefGoogle Scholar
Cunha, I., Planas, M., 1999. Optimal prey size for early turbot larvae (Scophthalmus maximus L.) based on mouth and ingested prey size. Aquaculture 176, 103110. CrossRefGoogle Scholar
Dos Santos, J., Burkow, I.C., Jobling, M., 1993, Patterns of growth and lipid deposition in cod (Gadus morhua L.) fed natural prey and fish based feeds. Aquaculture 110, 173189. CrossRefGoogle Scholar
Emlen, J.M. 1966, The role of time and energy in food preferences. Am. Nat. 100, 611617. CrossRefGoogle Scholar
Folkvord A., 1997, Ontogeny of cannibalism in larval and juvenile fishes with special emphasis on Atlantic cod. In: Chambers R.C., Trippel E.A. (Eds.), Early Life History and Recruitment in Fish Populations. London: Chapman and Hall, pp. 251–278.
Folkvord, A., Otterå, H., 1993, Effects of initial size distribution, day length, and feeding frequency on growth, survival and cannibalism in juvenile Atlantic cod (Gadus morhua L.). Aquaculture 114, 243260. CrossRefGoogle Scholar
Giacomini, H.C., Shuter, B.J., Lester, N.P., 2013, Predator bioenergetics and the prey size spectrum: Do foraging costs determine fish production? J. Theor. Biol. 332, 249260. CrossRefGoogle Scholar
Gillen, A.L., Stein, R.A., Carline, R.F., 1981, Predation by pellet-reared tiger muskellunge on minnows and bluegills in experimental systems. Trans. Am. Fish. Soc. 110, 197209. 2.0.CO;2>CrossRefGoogle Scholar
Gilles S., Dugué R., Slembrouck J., 2001, Manuel de production d’alevins du silure africain Heterobranchus longifilis. Paris, Maisonneuve and Larose.
Godin, J.-G.J., 1978, Behavior of juvenile pink salmon (Oncorhynchus gorbuscha Walbaum) toward novel prey: influence of ontogeny and experience. Environ. Biol. Fishes 3, 261266. CrossRefGoogle Scholar
Goldan, O., Popper, D., Karplus, I., 1997, Management of size variation in juvenile gilthead seabream (Sparus aurata) I: particle size and frequency of feeding dry and live food. Aquaculture 152, 181190. CrossRefGoogle Scholar
Hart P.J.B., Hamrin S.F., 1990, The role of behaviour and morphology in the selection of prey by pike. In: Hughes R.N. (Ed.), Behavioural Mechanisms of Food Selection. Berlin: Springer-Verlag, pp. 219–233.
Hasan, M.R., Macintosh,, D.J., 2008, Optimum food particle size in relation to body size of common carp, Cyprinus carpio L., fry. Aquac. Res. 23, 315325. CrossRefGoogle Scholar
Hecht, T., Appelbaum, S., 1988, Observations on intraspecific aggression and coeval sibling cannibalism by larval and juvenile Clarias gariepinus (Clariidae: Pisces) under controlled conditions. J. Zool. (London) 214, 2144 CrossRefGoogle Scholar
Hecht T., Oellermann L., Verheust L., 1996, Perspectives on clariid culture in Africa. Aquat. Living Resour. 9, Spec. Issue, 197–206.
Hecht, T., Pienaar, A.G., 1993, A review of cannibalism and its implications in fish larviculture. J. World Aquac. Soc. 24, 246261. CrossRefGoogle Scholar
Hossain, M.A.R., Haylor, G.S., Beveridge, M.C.M., 2000, The influence of food particle size on gastric emptying and growth rates of fingerling African catfish, Clarias gariepinus Burchell, 1822. Aquac. Nutr. 6, 7376. CrossRefGoogle Scholar
Houde, E.D., Zastrow, C.E., 1993, Ecosystem- and taxon-specific dynamic and energetics properties of larval fish assemblages. Bull. Mar. Sci. 53, 290335. Google Scholar
Hoyle, J.A., Keast, A., 1987, The effect of prey morphology and size on handling time in a piscivore, the largemouth bass (Micropterus salmoides). Can. J. Zool. 65, 19721977. CrossRefGoogle Scholar
Hseu, J.-R., Chang, H.-F., Ting, Y.-Y., 2003, Morphometric prediction of cannibalism in larviculture of orange-spotted grouper, Epinephelus coioides. Aquaculture 218, 203207. CrossRefGoogle Scholar
Hseu, J.-R., Huang, W.-B., 2014, Application of logistic regression analysis to predict cannibalism in orange-spotted grouper, Epinephelus coioides (Hamilton) fry. Aquac. Res. 45, 868873. CrossRefGoogle Scholar
Hseu, J.-R., Huang, W.-B., Chu, Y.-T., 2007, What causes cannibalization-associated suffocation in cultured brown-marbled grouper, Epinephelus fuscoguttatus (Forsskål, 1775)? Aquac. Res. 38, 10561060. Google Scholar
Hseu, J.-R., Hwang, P.P., Ting, Y.Y., 2004, Morphometric model and laboratory analysis on intracohort cannibalism in giant grouper Epinephelus lanceolatus fry. Fish. Sci. 70, 482486. CrossRefGoogle Scholar
Jobling, M., 1987, Influences of food particle size and dietary energy content on patterns of gastric evacuation in fish: test of a physiological model of gastric emptying. J. Fish Biol. 30, 299314. CrossRefGoogle Scholar
Jobling M., 1994, Fish Bioenergetics, London: Chapman and Hall.
Jobling, M., Wandsvik, A., 1983, An investigation of factors controlling food intake in Arctic charr, Salvelinus alpinus L. J. Fish Biol. 23, 391404. Google Scholar
Johnson, J.M., Post, D.M., 1996, Morphological constraints on intracohort cannibalism in age-0 largemouth bass. Trans. Am. Fish. Soc. 125, 809812. 2.3.CO;2>CrossRefGoogle Scholar
Juanes F., 1994, What determines prey size selectivity in piscivorous fishes? In: Stouder D.J., Fresh K.L., Feller R.J. (Eds.), Theory and Application in Fish Feeding Ecology. Columbia: South Carolina University Press, Belle W. Baruch Library in Marine Sciences No. 18, pp. 79–100.
Juanes, F., 2003, The allometry of cannibalism in piscivorous fishes. Can. J. Fish. Aquat. Sci. 60, 594602. CrossRefGoogle Scholar
Juanes F., Buckel J.A., Scharf F.S., 2002, Feeding ecology of piscivorous fishes. In: Hart P.J.B., Reynolds J.D. (Eds.), The Handbook of Fish Biology and Fisheries. Vol. 1: Fish Biology. London: Blackwell Scientific Publications, pp. 267–283.
Kamler E., 1992, Early Life History of Fish. London: Chapman and Hall.
Kerdchuen, N., Legendre, M., 1994, Larval rearing of an African catfish, Heterobranchus longifilis (Teleostei, Clariidae): a comparison between natural and artificial diets. Aquat. Living Resour. 7, 247253. CrossRefGoogle Scholar
Knights, B., 1983, Food particle-size preferences and feeding behaviour in warmwater aquaculture of European eel, Anguilla anguilla (L.). Aquaculture 30, 173190. CrossRefGoogle Scholar
Kolkovski, S., 2001, Digestive enzymes in fish larvae and juveniles – implications and applications to formulated diets. Aquaculture 200, 181201. CrossRefGoogle Scholar
Krebs J.R., Stephens D.W., 1986, Foraging theory. Princeton, NJ: Princeton University Press.
Legendre, M., 1986, Seasonal changes in sexual maturity and fecundity, and HCG-induced breeding of the catfish, Heterobranchus longifilis Val. (Clariidae), reared in Ebrie Lagoon (Ivory Coast). Aquaculture 55, 201213. CrossRefGoogle Scholar
Legendre, M., Teugels, G.G., Cauty, C., Jalabert, B., 1992, A comparative study of the growth rate and reproduction of Clarias gariepinus (Burchell, 1822), Heterobranchus longifilis Valenciennes, 1840, and their reciprocal hybrids (Pisces, Clariidae). J. Fish Biol. 40, 5979. CrossRefGoogle Scholar
MacLean, A., Huntingford, F.A., Armstrong, J.D., Ruxton, G.D., 2003, Fish don’t read textbooks: juvenile salmon prove ignorant of foraging theory. J. Fish Biol. 63 (suppl. A), 236237. CrossRefGoogle Scholar
Milinski, M., 1979, Can an experienced predator overcome the confusion of swarming prey more easily? Anim. Behav. 27, 11221126. CrossRefGoogle Scholar
Mittelbach, G.G., 1981, Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology 62, 13701386. CrossRefGoogle Scholar
Mittelbach, G.G., Persson, L., 1998, The ontogeny of piscivory and its ecological consequences. Can. J. Fish. Aquat. Sci. 55, 14541465. CrossRefGoogle Scholar
Moussa, T.A., 1956, Morphology of the accessory air-breathing organs of the teleost, Clarias lazera (C. and V.). J. Morphol. 98, 125160. CrossRefGoogle Scholar
Nwosu, F.M., Holzlöhner, S., 2000, Influence of temperature on egg hatching, growth and survival of larvae of Heterobranchus longifilis Val. 1840 (Teleostei: Clariidae). J. Appl. Ichthyol. 16, 2023. CrossRefGoogle Scholar
Otémé Z., Hem J.S., Legendre M., 1996, Nouvelles espèces de poissons-chats pour le développement de la pisciculture africaine. Aquat. Living Resour. 9, Spec. Issue, 207–217.
Parra, G., Yúfera, M., 2001, Comparative energetics during early development of two marine fish species, Solea senegalensis (Kaup) and Sparus aurata (L.). J. Exp. Biol. 204, 21752183. Google Scholar
Persson, L., 1986, Patterns of food evacuation in fishes: a critical review. Environ. Biol. Fishes 16, 5158. CrossRefGoogle Scholar
Pyke, G.H., Pulliam, H.R.Charnov, E.L., 1977, Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52, 137154. CrossRefGoogle Scholar
Qin, J., Fast, A.W., 1996, Size and feed dependent cannibalism with juvenile snakehead Channa striatus. Aquaculture 144, 313320. CrossRefGoogle Scholar
Scharf, F.S., Juanes, F., Sutherland, M., 1998, Inferring ecological relationships from the edges of scatter diagrams: a comparison of least squares and quantile regression techniques. Ecology 79, 448460. CrossRefGoogle Scholar
Shirota, A., 1970, Studies on the mouth size of fish larvae. Bull. Jpn. Soc. Sci. Fish. 36, 353368 (In Japanese with English summary). CrossRefGoogle Scholar
Sih, A., Christensen, B., 2001, Optimal diet theory: when does it work, and when and why does it fail? Anim. Behav. 61, 379390. CrossRefGoogle Scholar
Sogard, S.M., Olla, B.L., 1994, The potential for intracohort cannibalism in age-0 walleye pollock, Theragra chalcogramma, as determined under laboratory conditions. Environ. Biol. Fishes 39, 183190. CrossRefGoogle Scholar
Tabachek, J.L., 1988, The effect of feed particle size on growth and feed efficiency of Arctic charr (Salvelinus alpinus (L.)). Aquaculture 71, 319330. CrossRefGoogle Scholar
Wahl, D.H., Einfalt, L.M., Hooe, M.L., 1995, Effect of experience with piscivory on foraging behavior and growth of walleyes. Trans. Am. Fish. Soc. 124, 756763. 2.3.CO;2>CrossRefGoogle Scholar
Wahl, D.H., Stein, R.A., 1988, Selective predation by three esocids: the role of prey behavior and morphology. Trans. Am. Fish. Soc. 117, 142151. 2.3.CO;2>CrossRefGoogle Scholar
Wankowski, J.W.J., Thorpe, J.E., 1979, The role of food particle size in the growth of juvenile Atlantic salmon (Salmo salar L.). J. Fish Biol. 14, 351370. CrossRefGoogle Scholar
Werner, E.E., Gilliam, J.F., 1984, The ontogenetic niche and species interactions in size-structured populations. Annu. Rev. Ecol. Syst. 15, 393425. CrossRefGoogle Scholar
Werner, E.E., Hall, D.J., 1974, Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55, 10421052. CrossRefGoogle Scholar