Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T05:28:20.231Z Has data issue: false hasContentIssue false

Multiplex PCR sets of novel microsatellite loci for the great scallop Pecten maximus and their application in parentage assignment

Published online by Cambridge University Press:  06 May 2013

Romain Morvezen
Affiliation:
Institut Universitaire Européen de la Mer, Laboratoire des sciences de l’environnement marin, LEMAR, UMR 6539, rue Dumont d’Urville, 29280 Plouzané, France
Florence Cornette
Affiliation:
Ifremer, Laboratoire de génétique et pathologie des mollusques marins, 17390 La Tremblade, France
Grégory Charrier
Affiliation:
Department of Biological and Environmental Sciences – Tjärnö, University of Gothenburg, 45296 Strömstad, Sweden
Bruno Guinand
Affiliation:
Université de Montpellier II, UMR CNRS 5554, UMR 226, Institut des Sciences de l’Evolution de Montpellier, Place E. Bataillon, cc63, 34095 Montpellier Cedex 5, France
Sylvie Lapègue
Affiliation:
Ifremer, Laboratoire de génétique et pathologie des mollusques marins, 17390 La Tremblade, France
Pierre Boudry
Affiliation:
Ifremer, Laboratoire des sciences de l’environnement marin, BP 70, 29280 Plouzané, France
Jean Laroche*
Affiliation:
Institut Universitaire Européen de la Mer, Laboratoire des sciences de l’environnement marin, LEMAR, UMR 6539, rue Dumont d’Urville, 29280 Plouzané, France
*
a Corresponding author: jean.laroche@univ-brest.fr
Get access

Abstract

We report the isolation, development and multiplex optimisation of 12 new microsatellite loci for the great scallop, Pecten maximus. Diversity was moderate to high, with number of alleles ranging from 4 to 20 and observed heterozygosity between 0.28 and 0.88. Progeny produced in a commercial hatchery was used to test locus power for parentage assignment. The percentage of offspring that was unambiguously assigned to a unique pair of parents was 97% (software package CERVUS-COLONY). Parentage assignment revealed that 22% of the studied progeny resulted from unplanned crosses. Effective population size of the study progeny was also estimated. Our study illustrates the power of microsatellites for the genetic monitoring of hatchery-produced great scallops.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaumont A., Gjedrem T., 2006, Scallops – Pecten maximus and P. jacobaeus. In: Crosetti D., Lapègue S., Olesen I., Svasaand T. (Eds.). Genetic effects of domestication, culture and breeding of fish and shellfish, and their impacts on wild population. GENIMPACT project: Evaluation of genetic impact of aquaculture activities on native populations: a European network. Workshop, Viterbo, Italy, 12–17th June, 2006, pp. 62–69, http://genimpact.imr.no/
Beaumont, A.R., Morvan, C., Huelvan, S., Lucas, A., Ansell, A.D., 1993, Genetics of indigenous and transplanted population of Pecten maximus – no evidence for the existence of separate stocks. J. Exp. Mar. Biol. Ecol. 169, 7788. CrossRefGoogle Scholar
Boudry, P., Collet, B., Cornette, F., Hervouet, V., Bonhomme, F., 2002, High variance in reproductive success of the Pacific oyster (Crassostrea gigas Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture 204, 283296. CrossRefGoogle Scholar
Charrier, G., Morvezen, R., Calves, I., Laroche, J., 2012, Development of new microsatellite markers derived from expressed sequence tags for the great scallop (Pecten maximus). Conserv. Genet. Resour. 4, 931934. CrossRefGoogle Scholar
Chistiakov, D.A., Hellemans, B., Volckaert, F.A.M., 2006, Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture 255, 129. CrossRefGoogle Scholar
FAO Fisheries Department, Data and Statistics Unit, 2000, FISHSTAT Plus: Universal software for fishery statistical time series.
Guichoux, E., Lagache, L., Wagner, S., Chaumeil, P., Leger, P., Lepais, O., Lepoittevin, C., Malausa, T., Revardel, E., Salin, F., Petit, R.J., 2011, Current trends in microsatellite genotyping. Mol. Ecol. Resour. 11, 591611. CrossRefGoogle ScholarPubMed
Jones, A.G., Small, C.M., Paczolt, K.A., Ratterman, N.L., 2010, A practical guide to methods of parentage analysis. Mol. Ecol. Resour. 10, 630. CrossRefGoogle ScholarPubMed
Jones, O.R., Wang, J.L., 2010, COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551555. CrossRefGoogle ScholarPubMed
Kalinowski, S.T., Taper, M.L., Marshall, T.C., 2007, Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 10991106. CrossRefGoogle ScholarPubMed
Lallias, D., Stockdale, R., Boudry, P., Beaumont, A.R., Lapegue, S., 2009, Characterization of 27 microsatellite loci in the European flat oyster Ostrea edulis. Mol. Ecol. Resour. 9, 960963. CrossRefGoogle Scholar
Lallias, D., Taris, N., Boudry, P., Bonhomme, F., Lapegue, S., 2010, Variance in the reproductive success of flat oyster Ostrea edulis L. assessed by parentage analyses in natural and experimental conditions. Genet. Res. 92, 175187. CrossRefGoogle ScholarPubMed
Li, R., Li, Q., Cornette, F., Degremont, L., Lapegue, S., 2010, Development of four EST-SSR multiplex PCRs in the Pacific oyster (Crassostrea gigas) and their validation in parentage assignment. Aquaculture 310, 234239. CrossRefGoogle Scholar
Malausa, T., Gilles, A., Meglecz, E., Blanquart, H., Duthoy, S., Costedoat, C., Dubut, V., Pech, N., Castagnone-Sereno, P., Delye, C., Feau, N., Frey, P., Gauthier, P., Guillemaud, , Hazard, , Le Corre, V., Lung-Escarmant, B., Male, P.J.G., Ferreira, S., Martin, J.F., 2011, High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol. Ecol. Resour. 11, 638644. CrossRefGoogle ScholarPubMed
Meglecz, E., Costedoat, C., Dubut, V., Gilles, A., Malausa, T., Pech, N., Martin, J.F., 2010, QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26, 403404. CrossRefGoogle ScholarPubMed
Nie, H.T., Li, Q., Kong, L.F., 2012, Development of four multiplex PCRs in the zhikong scallop (Chlamys farreri) and their validation in parentage assignment. Biochem. Syst. Ecol. 44, 96101. CrossRefGoogle Scholar
Porta, J., Porta, J.M., Martinez-Rodriguez, G., Alvarez, M.D., 2006, Development of a microsatellite multiplex PCR for Senegalese sole (Solea senegalensis) and its application to broodstock management. Aquaculture 256, 159166. CrossRefGoogle Scholar
Rigaa, A., Cellos, D., Monnerot, M., 1997, Mitochondrial DNA from the scallop Pecten maximus: An unusual polymorphism detected by restriction fragment length polymorphism analysis. Heredity 79, 380387. CrossRefGoogle Scholar
Rousset, F., 2008, GENEPOP’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103106. CrossRefGoogle Scholar
Saavedra, C., Pena, J.B., 2005, Nucleotide diversity and Pleistocene population expansion in Atlantic and Mediterranean scallops (Pecten maximus and P. jacobaeus) as revealed by the mitochondrial 16S ribosomal RNA gene. J. Exp. Mar. Biol. Ecol. 323, 138150. CrossRefGoogle Scholar
Schuelke, M., 2000, An economic method for the fluorecent labeling of PCR fragments. Nature Biotechnol. 18, 233234. CrossRefGoogle Scholar
Taris N., Batista F.M., Boudry P., 2007, Evidence of response to unintentional selection for faster development and inbreeding depression in Crassostrea gigas larvae. Aquaculture 272 (suppl. 1), S69–S79.
Wang J., 2009, A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol. Ecol. 18, 10, 2148–2164.
Wang, Y., Wang, X., Wang, A., Guo, X., 2010, A 16-microsatellite multiplex assay for parentage assignment in the eastern oyster (Crassostrea virginica Gmelin). Aquaculture 308, S28S33. CrossRefGoogle Scholar
Waples R.S., Do C., 2010, Linkage disequilibrium estimates of contemporary N-e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution Evol. Appl. 3, 3, 244–262.
Watts, P.C., Mallanaphy, W.J., McCarthy, C., Beukers-Stewart, B.D., Mosley, M.W.J., Brand, A.R., Saccheri, I.J., 2005, Polymorphic microsatellite loci isolated from the great scallop, Pecten maximus (Bivalvia: Pectinidae). Mol. Ecol. Notes 5, 902904. CrossRefGoogle Scholar
Weir, B.S., Cockerham, C.C., 1984, Estimating F-statistics for the analysis of population-structure. Evolution 38, 13581370. Google ScholarPubMed
Wilding, C.S., Latchford, J.W., Beaumont, A.R., 1998, An investigation of possible stock structure in Pecten maximus (L.) using multivariate morphometrics, allozyme electrophoresis and mitochondrial DNA polymerase chain reaction restriction fragment length polymorphism. J. Shellfish Res. 17, 131139. Google Scholar