Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T13:09:41.733Z Has data issue: false hasContentIssue false

Trends in the area of suitable breeding habitat for the Endangered Lake Titicaca Grebe Rollandia microptera, 2001–2020

Published online by Cambridge University Press:  15 March 2023

D. A. Villar*
Affiliation:
Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK
P. R. Long
Affiliation:
Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
E. R. Gutierrez Tito
Affiliation:
Reserva Nacional del Titicaca, SERNANP, Pasaje 2 de Febrero N° 154, Puno, Peru Facultad de Ciencias Biológicas de la Universidad Nacional del Altiplano (UNA), Puno, Peru
E. G. Moreno Terrazas
Affiliation:
Facultad de Ciencias Biológicas de la Universidad Nacional del Altiplano (UNA), Puno, Peru
A. G. Gosler
Affiliation:
Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK Institute of Human Sciences, University of Oxford, 58a Banbury Road, Oxford, OX2 6QS, UK
*
*Author for correspondence: Daniel A. Villar, Email: daniel.villar@hertford.ox.ac.uk

Summary

The Lake Titicaca Grebe Rollandia microptera is a poorly studied endemic species found in the Lake Titicaca watershed of Peru and Bolivia. Multiple surveys from the early 2000s indicated that the species was suffering a rapid population decline with an unknown cause. At the same time as these surveys, reports emerged that there was an increase in burning of the totora wetlands which are thought to be the primary habitat for the Lake Titicaca Grebe. However, since 2003, no work has been published either on the current population of the Lake Titicaca Grebe, or the extent of the totora wetlands in the Lake Titicaca region. This paper used satellite data to monitor the change in extent of habitat potentially suitable for the Lake Titicaca Grebe to determine whether habitat loss is likely to be a major driver of population declines in this species. We found that the extent of potentially suitable wetland remained stable between 2001 and 2020, though there are more local regional trends of change in extent of totora. We also found that multiple areas exist that might support Lake Titicaca Grebe populations, but where ornithological knowledge is lacking. We suggest no change to the IUCN status of the Lake Titicaca Grebe, but recommend that further fieldwork is required to monitor the species’ current population, especially in previously unstudied but potentially habitable areas.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, A., Muñoz-Carpena, R., Kennnedy, R. E. and Murcia, C. (2016) Wetland landscape spatio-temporal degradation dynamics using the new Google Earth Engine cloud-based platform: opportunities for non-specialists in remote sensing. Trans.ASABE 59: 13311342.Google Scholar
Baker, P. A. and Fritz, S. C. (2015) Nature and causes of Quaternary climate variation of tropical South America. Quat. Sci. Rev. 124: 3147.CrossRefGoogle Scholar
Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M. J., Tapia, P. M. and Broda, J. P. (2001) The history of South American tropical precipitation for the past 25,000 years. Science 291: 640643.CrossRefGoogle ScholarPubMed
Banack, S. A., Rondón, X. J. and Diaz-Huamanchumo, W. (2004) Indigenous cultivation and conservation of totora (Schoenoplectus californicus, Cyperaceae) in Peru. Econ. Bot. 58: 1120.CrossRefGoogle Scholar
Beltrán Farfán, D., Palomino Calli, R., Moreno Terrazas, E., Peralta, C. and Montesinos Tubée, D. (2015) Calidad de agua de la bahía interior de Puno, lago Titicaca durante el verano del 2011. Rev. Peru. Biol. 22: 335340.CrossRefGoogle Scholar
BirdLife International. (2021a) Species Factsheet: Tachybaptus rufolavatus. Accessed online 23 March 2021 from http://datazone.birdlife.org/species/factsheet/alaotra-grebe-tachybaptus-rufolavatus.Google Scholar
BirdLife International. (2021b) Species Factsheet: Rollandia microptera. Accessed online 23 March 2021 from http://datazone.birdlife.org/species/factsheet/titicaca-grebe-rollandia-microptera.Google Scholar
Blanco, J. A. (2019) Suitability of totora (Schoenoplectus californicus (C.A. Mey.) Soják) for its use in constructed wetlands in areas polluted with heavy metals. Sustainability 11: 19.CrossRefGoogle Scholar
Bottrill, M. C., Joseph, L. N., Carwardine, J., Bode, M., Cook, C., Game, E. T. and Possingham, H. P. (2008) Is conservation triage just smart decision making? Trends Ecol. Evol. 23: 649654.CrossRefGoogle ScholarPubMed
Bruno, M. C., Capriles, J. C., Hastorf, C. A., Fritz, S. C., Weide, D. M., Domic, A. I. and Baker, P. A. (2021) The rise and fall of Wiñaymarka: rethinking cultural and environmental interactions in the southern basin of Lake Titicaca. Hum. Ecol. 15: 131145.CrossRefGoogle Scholar
Callaghan, C. T., Nakagawa, S. and Cornwell, W. K. (2021) Global abundance estimates for 9,700 bird species. Proc. Natl Acad. Sci. U S A 21: e2023170118.Google Scholar
Canessa, S., Guillera‐Arroita, G., Lahoz‐Monfort, J. J., Southwell, D. M., Armstrong, D. P., Chadès, I. and Gimenez, O. (2015) When do we need more data? A primer on calculating the value of information for applied ecologists. Methods Ecol. Evol. 6: 12191228.CrossRefGoogle Scholar
Congalton, R. G. and Green, K. (1999) Assessing the accuracy of remotely sensed data: principles and practices. Boca Raton, FL, USA: Lewis Publishers.Google Scholar
Cordell, S., Questad, E. J., Asner, G. P., Kinney, K. M., Thaxton, J. M., Uowolo, A. and Chynoweth, M. W. (2017) Remote sensing for restoration planning: how the big picture can inform stakeholders. Restor. Ecol. 25: S147S154.CrossRefGoogle Scholar
Cross, S., Baker, P., Seltzer, G., Fritz, S. and Dunbar, R. (2001) Late Quaternary climate and hydrology of tropical South America inferred from an isotopic and chemical model of Lake Titicaca, Bolivia and Peru. Quat. Res. 56: 19.Google Scholar
Dinesen, L., Chamorro, A., Fjeldså, J. and Aucca, C. (2019) Long-term declines in waterbirds abundance at Lake Junín, Andean Peru. Bird Conserv. Internatn. 29: 8399.CrossRefGoogle Scholar
Erickson, C. L. (2000) The Lake Titicaca Basin: a Pre-Columbian built landscape. Pp. 311356 in Lentz, D. ed. Imperfect balance: landscape transformations in the Precolumbian Americas. New York, USA: Columbia University Press.CrossRefGoogle Scholar
Fjeldså, J. (1981) Comparative ecology of Peruvian grebes – a study of the mechanisms of evolution of ecological isolation. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhavn 144: 124249.Google Scholar
Fjeldså, J. (1984) Three endangered South American grebes (Podiceps): case histories and the ethics of saving species by human intervention. Ann. Zool. Fennici 21: 411416.Google Scholar
Fjeldså, J. (1993) The decline and probable extinction of the Colombian Grebe Podiceps andinus. Bird Conserv. Internatn. 3: 221234.CrossRefGoogle Scholar
Fjeldså, J. (2004) The grebes. Oxford, UK: Oxford University Press.Google Scholar
Fjeldså, J. and Krabbe, N. (1990) Birds of the High Andes: a manual to the birds of the temperate zone of the Andes and Patagonia, South America. Copenhagen, Denmark: Zoological Museum, University of Copenhagen.Google Scholar
Franklin, J. (2010) Moving beyond static species distribution models in support of conservation biogeography. Divers. Distrib. 16: 321330.CrossRefGoogle Scholar
Guerlesquin, M. (1992) Charophytes. Pp. 232240 in Dejoux, C. and Iltis, A. eds. Lake Titicaca: a synthesis of limnological knowledge. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Guevara, E., Santander, G. T., Soria, A. and Henry, P. (2016) Status of the Northern Silvery Grebe Podiceps juninensis in the northern Andes: recent changes in distribution, population trends and conservation needs. Bird Conserv. Internatn. 26: 466475.CrossRefGoogle Scholar
Hampton, S. E., McGowan, S., Ozersky, T., Virdis, S. G. P., Vu, T. T., Spanbauer, T. L. and Fritz, S. C. (2018) Recent ecological change in ancient lakes. Limnol. Oceanogr. 63: 22772304.CrossRefGoogle Scholar
Harrity, E. J., Stevens, B. S. and Conway, C. J. (2020) Keeping up with the times: mapping range-wide habitat suitability for endangered species in a changing environment. Biol. Conserv. 250: 108734.CrossRefGoogle Scholar
Heiser, C. B. (1974) Totora, taxonomy, and Thor. Plant Sci. Bull. 20: 2226.Google Scholar
Heiser, C. B. (1978) The totora (Scirpus californicus) in Ecuador and Peru. Econ. Bot. 32: 222236.CrossRefGoogle Scholar
Hunter, L. A. (1988) Status of the endemic Atitlan Grebe of Guatemala: is it extinct? Condor 90: 906912.CrossRefGoogle Scholar
Hutchings, J. A. (2000) Collapse and recovery of marine fishes. Nature 406: 882885.CrossRefGoogle ScholarPubMed
Ibarguchi, G. (2014) From Southern Cone arid lands, across Atacama, to the Altiplano: biodiversity and conservation at the ends of the world. Biodiversity 15: 255264.CrossRefGoogle Scholar
Iltis, A. and Mourguiart, P. (1992) Higher plants: distribution and biomass. Pp. 241252 in Dejoux, C. and Iltis, A. eds, Lake Titicaca: a synthesis of limnological knowledge. Dordrecht, The Netherlands: Kluwer Academic Press.Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K. and Mooers, A. O. (2014) Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24: 919930.CrossRefGoogle ScholarPubMed
Kent, A. M., Webber, T. and Steadman, D. W. (1999) Distribution, relative abundance, and prehistory of birds on the Taraco Peninsula, Bolivian Altiplano. Ornitol. Neotrop. 10: 151178.Google Scholar
Konter, A. (2006) The Titicaca Flightless Grebe Rollandia microptera population of Río Laka Jahuira, Bolivia. Cotinga 26: 3638.Google Scholar
La Barre, W. (1941) The Uru of the Rio Desaguadero. Am. Anthropol. 43: 493522.CrossRefGoogle Scholar
La Barre, W. (1948) The Aymara Indians of the Lake Titicaca Plateau. Washington, DC, USA: American Anthropological Association Press.Google Scholar
Levieil, D. and Orlove, B. (1990) Local control of aquatic resources: community and ecology in Lake Titicaca, Peru. Am. Anthropol. 92: 362382.CrossRefGoogle Scholar
Levieil, D. and Orlove, B. (1992) Socio-economic importance of macrophytes. Pp. 505511 in Dejoux, C. I. and Iltis, A. ed. Lake Titicaca: a synthesis of limnological knowledge. Dordrecht, The Netherlands: Kluwer Academic Press.Google Scholar
Lima-Quispe, N., Escobar, M., Wickel, A. J., von Kaenel, , and Purkey, D. (2021) Untangling the effects of climate variability and irrigation management on water levels in Lakes Titicaca and Poopó. J. Hydrol. Reg. Stud. 37: 100927.Google Scholar
Long, P. R., Zefania, S., Ffrench-Constant, R. H. and Szekely, T. (2008) Estimating the population size of an endangered shorebird, the Madagascar plover, using a habitat suitability model. Anim. Conserv. 11: 118127.CrossRefGoogle Scholar
Loza-Del Carpio, A., Mamani Flores, J. and Loza-Del Carpio, J. (2019) Composición proximal y aceptabilidad organoléptica de la carne de cinco especies de aves cinegéticas del lago Titicaca, Perú. Ecosistemas y Recursos Agropecuarios 6: 103114.CrossRefGoogle Scholar
Martinez, A. E., Arabinar, D. F. and Gutierrez, E. R. (2006) An assessment of the abundance and distribution of the Titicaca Flightless Grebe Rollandia microptera on Lake Titicaca and evaluation of its conservation status. Bird Conserv. Internatn. 16: 237251.CrossRefGoogle Scholar
Menz, M. H. and Arlettaz, R. (2012) The precipitous decline of the ortolan bunting Emberiza hortulana: time to build on scientific evidence to inform conservation management. Oryx 46: 122129.CrossRefGoogle Scholar
Mladenoff, D. J. and Sickley, T. A. (1998) Assessing potential gray wolf restoration in the Northeastern United States: a spatial prediction of favourable habitat and potential wolf population levels. J. Wildl. Manage. 62: 110 CrossRefGoogle Scholar
Moreau, S., Bosseno, R., Gu, X. F. and Baret, F. (2003) Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR. Remote Sens. Environ. 85: 516529.CrossRefGoogle Scholar
Mourguiart, P., Corrège, T., Wirrmann, D., Argollo, J., Montenegro, M., Pourchet, M. and Carbonel, P. (1998) Holocene palaeohydrology of Lake Titicaca estimated from an ostracod-based transfer function. Palaeogeogr. Palaeoclimatol. Palaeoecol. 143: 5172.CrossRefGoogle Scholar
O’Donnell, C. and Fjeldså, J. (1997) Grebes: a global action plan for their conservation. Gland, Switzerland: International Union for Conservation of Nature.Google Scholar
Orlove, B. (2002) Lines in the water: nature and culture in Lake Titicaca. Berkeley, CA, USA: University of California Press.CrossRefGoogle Scholar
Orlove, B., Levieil, D. and Treviño, H. P. (1992) Social and economic aspects of the fisheries. Pp. 500505 in Dejoux, C. and Iltis, A. eds. Lake Titicaca: a synthesis of limnocological knowledge. Dordrecht, The Netherlands: Kluwer Academic Press.Google Scholar
Pawley, A., Fritz, S. C., Baker, P. A., Seltzer, G. O. and Dunbar, R. (2001).The biological, chemical, and physical limnology of Lake Titicaca, Bolivia/Peru. Pp. 195216 in Munawar, M. and Hecky, R. E. eds. The great lakes of the world (GLOW): food-web, health and integrity. East Lansing, MI, USA: Michigan State University Press.CrossRefGoogle Scholar
Perreault, T. (2020) Climate change and climate politics: parsing the causes and effects of the drying of Lake Poopó, Bolivia. J. Lat. Am. Geogr. 19: 2646.CrossRefGoogle Scholar
Placzek, C., Quade, J. and Patchett, P. (2011) Isotopic tracers of paleohydrologic change in large lakes of the Bolivian Altiplano. Quat. Res. 75: 231244.CrossRefGoogle Scholar
Pulido Capurro, V. (2018) Estacionalidad de las especies de aves residentes y migratorias altoandinas en el lado peruano de la cuenca del Titicaca. Rev. Investig. Altoandin. 20: 461476.CrossRefGoogle Scholar
Raynal-Roques, A. (1992) The higher plants. Pp. 223231 in Dejoux, C. and Iltis, A. eds. Lake Titicaca: a synthesis of limnoclogical knowledge. Dordrecht, The Netherlands: Kluwer Academic Press.CrossRefGoogle Scholar
Rieckermann, J., Daebel, H., Ronteltap, M. and Bernauer, T. (2006) Assessing the performance of international water management at Lake Titicaca. Aquat. Sci. 68: 502516.CrossRefGoogle Scholar
Rigsby, C. A., Bradbury, J. P., Baker, P. A., Rollins, S. M. and Warren, M. R. (2005) Late Quaternary palaeolakes, rivers, and wetlands on the Bolivian Altiplano and their palaeoclimatic implications. J. Quat. Sci. 20: 671691.CrossRefGoogle Scholar
Rose, R. A., Byler, D., Eastman, J. R., Fleishman, E., Geller, G., Goetz, S., and Wilson, C. (2015) Ten ways remote sensing can contribute to conservation. Conserv. Biol. 29: 350359.CrossRefGoogle ScholarPubMed
Settle, J. J. and Drake, N. A. (1993) Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens. 14: 11591177.CrossRefGoogle Scholar
Stanish, C. (2012) Ancient Titicaca: the evolution of complex society in southern Peru and northern Bolivia. Berkeley, CA, USA: University of California Press.Google Scholar
Torres-Batlló, J., Martí-Cardona, B. and Pillco-Zolá, R. (2020) Mapping evapotranspiration, vegetation and precipitation trends in the catchment of the shrinking Lake Poopó. Remote Sens. 12: 73.CrossRefGoogle Scholar
Tutin, T. G. (1940) The Percy Sladden Trust Expedition to Lake Titicaca in 1937 under the Leadership of Mr. H. Cary Gilson X. The macrophytic vegetation of the lake. Trans. Linn. Soc. Lond. 1: 161189.Google Scholar
Weide, D. M., Fritz, S. C., Hastorf, C. A., Bruno, M. C., Baker, A., Guedron, S. and Salenbien, W. (2017) A ~6000 yr diatom record of mid- to late Holocene fluctuations in the level of Lago Wiñaymarca, Lake Titicaca (Peru/Bolivia). Quat. Res. 88: 179192.CrossRefGoogle Scholar
Wiles, G. J., Bart, J., Beck, R. E. Jr and Aguon, C. F. (2003) Impacts of the brown tree snake: patterns of decline and species persistence in Guam’s avifauna. Conserv. Biol. 17: 13501360.CrossRefGoogle Scholar