Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T10:19:49.696Z Has data issue: false hasContentIssue false

Host races of the pea aphid Acyrthosiphon pisum differ in male wing phenotypes

Published online by Cambridge University Press:  27 March 2009

A. Frantz*
Affiliation:
INRA, UMR 1099 Biologie des Organismes et des Populations appliquée à la Protection des Plantes (BiO3P), BP 35327Le Rheu, F-35653France Institut des Sciences de l'Evolution, UMR CNRS 5554, Université Montpellier II, F-34095Montpellier, France UPMC Univ Paris 06, UMR 7625, Ecologie & Evolution, F-75005, Paris, France CNRS, UMR 7625, Ecologie & Evolution, F-75005, Paris, France
M. Plantegenest
Affiliation:
Agrocampus Ouest, UMR 1099Biologie des Organismes et des Populations appliquée à la Protection des Plantes (BiO3P), Rennes, F-35042France
J.-C. Simon
Affiliation:
INRA, UMR 1099 Biologie des Organismes et des Populations appliquée à la Protection des Plantes (BiO3P), BP 35327Le Rheu, F-35653France
*
*Author for correspondence Fax: +33 (0)1 44 27 35 16 E-mail: adrien.frantz@upmc.fr

Abstract

The evolution of reproductive isolation without geographic isolation (sympatric speciation) has recently gained strong theoretical and empirical supports. It is now widely admitted that many host-specific phytophagous insect species have arisen through shifting and adapting to new plants. The pea aphid Acyrthosiphon pisum has received considerable attention in this context and is now considered as a probable case of incipient sympatric speciation through host specialization. In Europe, three host races have been described so far, one on annual plants (pea and broad bean) and two on perennial plants (red clover and alfalfa, respectively). These host races are genetically differentiated and exhibit strong ecological specialization affecting their preferences and performances on alternative plants. Here, we investigate whether other life-history traits of ecological importance are associated with host specialization in the species. In particular, because A. pisum shows a genetically determined male wing variation, we tested if its host races also differ in their proportion of winged/wingless male phenotypes. We used a large collection of pea aphid lineages sampled on pea, broad bean, red clover and alfalfa and analyzed their male production by placing them in conditions inducing the sexual phase in A. pisum. Striking differences in the frequency of male dispersal genotypes were found between host populations; aphids producing winged males were in high proportion among lineages from annual hosts, while those producing wingless males were in high proportion on perennial ones. The evolutionary maintenance and ecological consequences of this association between habitat specialization and male wing variation are discussed.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akimoto, S. (2006) Inbreeding depression, increased phenotypic variance, and a trade-off between gonads and appendages in selfed progeny of the aphid Prociphilus oriens. Evolution 60, 7786.Google Scholar
Andow, D.A. & Alstad, D.N. (1999) Credibility interval for rare resistance allele frequencies. Journal of Economic Entomology 92, 755758.CrossRefGoogle Scholar
Barker, J.S.F. (2005) Population structure and host-plant specialization in two Scaptodrosophila flower-breeding species. Heredity 94, 129138.CrossRefGoogle ScholarPubMed
Berlocher, S.H. & Feder, J.L. (2002) Sympatric speciation in phytophagous insects: moving beyond controversy? Annual Review of Entomology 47, 773815.CrossRefGoogle ScholarPubMed
Braendle, C. (2003) The genetics and development of alternative phenotypes in aphids. PhD thesis, University of Cambridge, Cambridge, UK.Google Scholar
Braendle, C., Caillaud, M.C. & Stern, D.L. (2005a) Genetic mapping of aphicarus – a sex-linked locus controlling a wing polymorphism in the pea aphid (Acyrthosiphon pisum). Heredity 94, 435442.CrossRefGoogle Scholar
Braendle, C., Friebe, I., Caillaud, M.C. & Stern, D.L. (2005b) Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polyphenism. Proceedings of the Royal Society, Series B: Biological Sciences 272, 657664.Google ScholarPubMed
Braendle, C., Davis, G.K., Brisson, J.A. & Stern, D.L. (2006) Wing dimorphism in aphids. Heredity 97, 192199.CrossRefGoogle ScholarPubMed
Caillaud, M.C., Boutin, M., Braendle, C. & Simon, J.C. (2002) A sex-linked locus controls wing polymorphism in males of the pea aphid, Acyrthosiphon pisum (Harris). Heredity 89, 346352.CrossRefGoogle ScholarPubMed
Carré, S. & Bournoville, R. (2003) Specialization of spring sympatric populations of Acyrthosiphon pisum (Hemiptera: Aphididae) according to Fabaceae. Annales de la Société Entomologique de France 39, 391397.CrossRefGoogle Scholar
Carroll, S.P. & Boyd, C. (1992) Host race radiation in the soapberry bug: natural history with the history. Evolution 46, 10521069.CrossRefGoogle ScholarPubMed
Craig, T.P., Itami, J.K. & Craig, J.V. (2007) Host plant genotype influences survival of hybrids between Eurosta solidaginis host races. Evolution 61, 26072613.CrossRefGoogle ScholarPubMed
Diehl, S.R. & Bush, G.L. (1984) An evolutionary and applied perspective of insect biotypes. Annual Review of Entomology 29, 471504.CrossRefGoogle Scholar
Drès, M. & Mallet, J. (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London, Series B 357, 471492.Google ScholarPubMed
Erlykova, N. (2003) Inter- and intraclonal variability in the photoperiodic response and fecundity in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). European Journal of Entomology 100, 3137.CrossRefGoogle Scholar
Feder, J.L., Berlocher, S.H. & Opp, S.B. (1998) Sympatric host-race formation and speciation in Rhagoletis (Diptera: Tephritidae): a tale of two species for Charles D. pp. 408441in Mopper, S. & Strauss, S.Y. (Eds) Genetic Structure and Local Adaptation in Natural Insect Populations. New York, Chapman & Hall.CrossRefGoogle Scholar
Ferrari, J., Darby, A.C., Daniell, T.J., Godfray, H.C.J. & Douglas, A.E. (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecological Entomology 29, 6065.CrossRefGoogle Scholar
Ferrari, J., Godfray, H.C.J., Faulconbridge, A.S., Prior, K. & Via, S. (2006) Population differentiation and genetic variation in host choice among pea aphids from eight host plant genera. Evolution 60, 15741584.Google ScholarPubMed
Frantz, A., Plantegenest, M., Bonhomme, J., Prunier-Leterme, N. & Simon, J.C. (2005) Strong biases in the transmission of sex chromosomes in the aphid Rhopalosiphum padi. Genetical Research 85, 111117.CrossRefGoogle ScholarPubMed
Frantz, A., Plantegenest, M., Mieuzet, L. & Simon, J.C. (2006a) Ecological specialization correlates with genotypic differentiation in sympatric host-populations of the pea aphid. Journal of Evolutionary Biology 19, 392401.CrossRefGoogle ScholarPubMed
Frantz, A., Plantegenest, M. & Simon, J.C. (2006b) Temporal habitat variability and the maintenance of sex in host populations of the pea aphid. Proceedings of the Royal Society, Series B: Biological Sciences 273, 28872891.Google ScholarPubMed
Hadany, L. & Becker, T. (2003) On the evolutionary advantage of fitness-associated recombination. Genetics 165, 21672179.CrossRefGoogle ScholarPubMed
Harrison, R.G. (1980) Dispersal polymorphisms in insects. Annual Review of Ecology and Systematics 11, 95–118.CrossRefGoogle Scholar
Hufbauer, R.A. & Via, S. (1999) Evolution of an aphid-parasitoid interaction: Variation in resistance to parasitism among aphid populations specialized on different plants. Evolution 53, 14351445.Google ScholarPubMed
Kondrashov, A.S. (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435440.CrossRefGoogle ScholarPubMed
Leonardo, T.E. (2004) Host plant specialization in the pea aphid: exploring the role of facultative symbionts. PhD dissertation. University of California, Davis, CA, USA.Google Scholar
Leonardo, T.E. & Muiru, G.T. (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proceedings of the Royal Society, Series B: Biological Sciences 270, S209S212.CrossRefGoogle ScholarPubMed
Losey, J.E. & Eubanks, M.D. (2000) Implications of pea aphid host-plant specialization for the potential colonization of vegetables following post-harvest emigration from forage crops. Environmental Entomology 29, 12831288.CrossRefGoogle Scholar
MacKay, P.A. (1987) Production of sexual and asexual morphs and changes in reproductive sequence associated with photoperiod in the pea aphid, Acyrthosiphon pisum (Harris). Canadian Journal of Zoology 65, 26022606.CrossRefGoogle Scholar
Malausa, T., Leniaud, L., Martin, J.F., Audiot, P., Bourguet, D., Ponsard, S., Lee, S.F., Harrison, R.G. & Dopman, E. (2007) Molecular differentiation at nuclear loci in French host races of the European corn borer (Ostrinia nubilalis). Genetics 176, 23432355.CrossRefGoogle ScholarPubMed
McPheron, B.A., Smith, D.C. & Berlocher, S.H. (1988) Genetic differences between host races of the apple maggot fly. Nature 336, 6466.CrossRefGoogle Scholar
Moran, N. (1993) Evolution of sex ratio variation in aphids. pp. 346368in Wrensch, D.L. & Ebbert, M.A. (Eds) Evolution and Diversity of Sex Ratio in Insects and Mites. New York, Chapman & Hall.CrossRefGoogle Scholar
Müller, F.P. (1981) Biotype formation and sympatric speciation in aphids. pp. 135166 in Proceedings International Aphidological Symposium, Jablonna. Polska Academica Nauk Warsaw.Google Scholar
Nijhout, H.F. (1999) Control mechanisms of polyphenic development in insects. Bioscience 49, 181192.CrossRefGoogle Scholar
Ohshima, I. (2008) Host race formation in the leaf-mining moth Acrocercops transecta (Lepidoptera: Gracillariidae). Biological Journal of the Linnean Society 93, 135145.CrossRefGoogle Scholar
Perrin, N. & Mazalov, V. (2000) Local mate competition, inbreeding and the evolution of sex-biased dispersal. The American Naturalist 155, 116127.CrossRefGoogle ScholarPubMed
Raymond, M. & Rousset, F. (1995) GENEPOP (version 1.2) – Population-genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Rice, W.R. (1987) Speciation via habitat specialization: the evolution of reproductive isolation as a correlated character. Evolutionary Ecology 1, 301314.CrossRefGoogle Scholar
Scheffer, S.J. & Wiegmann, B.M. (2000) Molecular phylogenetics of the holly leafminers (Diptera: Agromyzidae: Phytomyza): species limits, speciation, and dietary specialization. Molecular Phylogenetics and Evolution 17, 244255.CrossRefGoogle ScholarPubMed
Simon, J.C., Rispe, C. & Sunnucks, P. (2002) Ecology and evolution of sex in aphids. Trends in Ecology and Evolution 17, 3439.CrossRefGoogle Scholar
Simon, J.C., Carré, S., Boutin, M., Prunier-Leterme, N., Sabater-Muñoz, B., Latorre, A. & Bournoville, R. (2003) Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proceedings of the Royal Society, Series B: Biological Sciences 270, 17031712.CrossRefGoogle ScholarPubMed
Smith, M.A.H. & MacKay, P.A. (1989) Genetic variation in male alary dimorphism in populations of pea aphid, Acyrthosiphon pisum. Entomologia Experimentalis et Applicata 51, 125132.CrossRefGoogle Scholar
Sunnucks, P., DeBarro, P.J., Lushai, G., Maclean, N. & Hales, D. (1997) Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization. Molecular Ecology 6, 10591073.CrossRefGoogle ScholarPubMed
Sutherland, O.R.W. (1969) The role of crowding in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology 15, 13851410.CrossRefGoogle Scholar
Via, S. (1999) Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 53, 14461457.CrossRefGoogle ScholarPubMed
Via, S. (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends in Ecology & Evolution 16, 381390.CrossRefGoogle ScholarPubMed
Walsh, B.D. (1864) On phytophagic varieties and phytophagic species. Proceedings of the Entomological Society of Philadelphia 3, 403430.Google Scholar
Wilson, A.C.C. & Sunnucks, P. (2006) The genetic outcomes of sex and recombination in long-term functionally parthenogenetic lineages of Australian Sitobion aphids. Genetical Research 87, 175185.CrossRefGoogle ScholarPubMed
Wood, T.K. & Guttman, S. (1982) Ecological and behavioral basis for reproductive isolation in the sympatric Enchenopa binotata complex (Homoptera: Membracidae). Evolution 36, 233242.Google ScholarPubMed
Yamaguchi, Y. (1985) Sex-ratios of an aphid subject to local mate competition with variable maternal condition. Nature 318, 460462.CrossRefGoogle Scholar
Zera, A.J. & Denno, R.F. (1997) Physiology and ecology of dispersal dimorphism in insects. Annual Review of Entomology 42, 207231.CrossRefGoogle ScholarPubMed