Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T03:53:48.366Z Has data issue: false hasContentIssue false

Parasitoids of Lobesia botrana (Lepidoptera: Tortricidae) in the Douro Demarcated Region vineyards and the prospects for enhancing conservation biological control

Published online by Cambridge University Press:  06 May 2022

Cristina Carlos*
Affiliation:
Association for the Development of Viticulture in the Douro Region, ADVID, Centro de Excelência da Vinha e do Vinho Bldg., Science and Technology Park of Vila Real, Régia Douro Park, 5000-033 Vila Real, Portugal Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
Fátima Gonçalves
Affiliation:
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
Claire Villemant
Affiliation:
Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, entomologie, 45 rue Buffon, 75005 Paris, France
Daniel Paredes
Affiliation:
Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
Juliana Salvação
Affiliation:
UTAD/ECAV – University of Trás-os-Montes and Alto Douro, School of Agrarian and Veterinary Sciences, 5001-801 Vila Real, Portugal
Laura Torres
Affiliation:
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
*
Author for correspondence: Cristina Carlos, Email: cristinac@utad.pt

Abstract

The more restrictive regulations of pesticides in Europe have led to an increase in conservation biological control (CBC) research. However, little attention has been paid to the main determinants of Lobesia botrana parasitism. The Douro Demarcated Region landscape offers scope for the use of CBC. The study was conducted between 2002 and 2015 aiming at: (i) identifying parasitoids associated with L. botrana and evaluating their impact as biological control agents in each generation of the pest, and (ii) evaluating the effect of both the proportion of ecological infrastructures (EI) near the vineyards, and the impact of management practices (chemical treatments and ground cover) on the parasitism of L. botrana. A total of 3226 larvae/pupae of L. botrana were collected (15% were parasitized and 485 parasitoids emerged). A complex of 16 taxa of parasitoids was identified, the majority belonging to Hymenoptera. The most abundant were Elachertus sp. (Eulophidae), Campoplex capitator Aubert (Ichneumonidae), and Brachymeria tibialis (Walker) (Chalcididae), which represented 62.5, 12.6, and 12.0% of the total assemblage of parasitoids which emerged, respectively. The percentage of parasitism ranged from 0.0 to 61.5% (first generation), from 0.0 to 36.8% (second generation), and from 0.0 to 12.1% (third generation). Importantly, it was found that the parasitism rate was higher in vineyards with ground cover. In addition, EI in the area surrounding the vineyards produced a significant increase in parasitism. These results suggest potential for CBC of L. botrana if EI around vineyards, and ground cover with native perennial plants within vineyards, are encouraged.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbarzadeh, SG (2012) Larval parasitoids of Lobesia botrana (Denis and Schiffermüller, 1775) (Lepidoptera: Tortricidae) in Orumieh vineyards. Journal of Agricultural Sciences and Technology 14, 267274.Google Scholar
Andresen, T and Rebelo, J (2013) Assessment of the State of Conservation of the Property Alto Douro Wine Region – Evolutive and Living Cultural Landscape – Assessment Report. CIBIO UP/UTAD, Porto.Google Scholar
Bagnoli, B and Lucchi, A (2006) Parasitoids of Lobesia botrana (Den. & Schiff.) in Tuscany. IOBC/WPRS Bulletin 29, 139142.Google Scholar
Bates, D, Maechler, M, Bolker, B and Walker, S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0–5.Google Scholar
Begg, GS, Cook, SM, Dye, R, Ferrante, M, Franck, P, Lavigne, C, Lövel, GL, Mansion-Vaquie, A, Pell, JK, Petit, S, Quesada, N, Ricci, B, Wratten, SD and Birch, ANE (2017) A functional overview of conservation biological control. Crop Protection 97, 145158.CrossRefGoogle Scholar
Bianchi, FJJA and Wäckers, FL (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biological Control 46, 400408.CrossRefGoogle Scholar
Bianchi, FJJA, Booij, CJH and Tscharntke, T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B 273, 17151727.CrossRefGoogle ScholarPubMed
Böller, EF, Häni, F and Poehling, HM (2004) Ecological Infrastructures: Ideabook on Functional Biodiversity at the Farm Level. Temperate Zones of Europe. Lausanne, Switzerland: Swiss Centre for Agricultural Extension and Rural Development, p. 212.Google Scholar
Carlos, C (2017) Towards a sustainable control of arthropod pests in Douro Demarcated Region vineyards with emphasis on the grape berry moth, Lobesia botrana (Denis & Schifermüller) (PhD thesis). Universidade de Trás-os-Montes e Alto Douro, Portugal, p. 164.Google Scholar
Carlos, C, Costa, JR, Tão, CB, Alves, F and Torres, LM (2006) Parasitismo associado à traça da uva, Lobesia botrana (Dennis & Schiffermüller) na Região Demarcada do Douro. Boletín de Sanidad Vegetal. Plagas 32, 355362.Google Scholar
Carlos, C, Gonçalves, F, Oliveira, I and Torres, L (2018) Is a biofix necessary for predicting the flight phenology of Lobesia botrana in Douro Demarcated Region vineyards? Crop Protection 110, 5764.CrossRefGoogle Scholar
Coscollá, R (1980) Aproximación al estudio del parasitismo natural sobre Lobesia botrana Den. y Schiff. en las comarcas vitícolas Valencianas. Boletín de Sanidad Vegetal. Plagas 6, 515.Google Scholar
Cuttelod, A, García, N, Malak, D, Temple, H and Katariya, V (2008) The Mediterranean: a biodiversity hotspot under threat. In Vié, JC, Hilton-Taylor, C and Stuart, SN (eds), The 2008 Review of The IUCN Red List of Threatened Species. Gland, Switzerland: IUCN, pp. 116.Google Scholar
Daane, KM, Brian, N, Hogg, BN, Wilson, H and Yokota, GY (2018) Native grass ground covers provide multiple ecosystem services in Californian vineyards. Journal of Applied Ecology 55, 24732483.CrossRefGoogle Scholar
Delrio, G, Luciano, P and Prota, R (1987) Researches on grapevine moth in Sardinia. In Cavalloro, R (ed.), Integrated Pest Control in Viticulture: A.A. Belkama, pp. 5767.Google Scholar
Directive 2009/128/EC (Sustainable Use of Pesticide). Available at https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:en:PDF.Google Scholar
ESRI (2018) DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo and the GIC User community (World Imagery Bing Map consulted in August 2018).Google Scholar
Gaigher, R, Pryke, JS and Samways, MJ (2015) High parasitoid diversity in remnant natural vegetation, but limited spillover into the agricultural matrix in South African vineyard ecosystems. Biological Conservation 186, 6974.CrossRefGoogle Scholar
Genini, M (2000) Antagonistes de la cicadelle verte et des vers de la grappe dans le vignoble valaisan et les milieux environnants. Revue Suisse Viticulture Arboriculture Horticulture 32, 153160.Google Scholar
Graham, MWR (1995) European Elasmus (Hymenoptera, Chalcidoidea, Elasmidae) with a key and descriptions of five new species. Entomologist's Monthly Magazine 131, 123.Google Scholar
Haeselbarth, E (1985) Determination list of entomophagous insects No. 10. IOBC/WPRS Bulletin 8, 31.Google Scholar
Hall, RM, Penke, N, Kriechbaum, M, Krastschmer, S, Jung, V, Chollet, S, Guernion, M, Nicolai, A, Burel, F, Fertil, A, Lora, A, Sánchez-Cuesta, R, Guzmán, G, Gómez, J, Popescu, D, Hoble, A, Bunea, C-I, Zaller, JG and Winter, S (2020) Vegetation management intensity and landscape diversity alter plant species richness, functional traits and community composition across European vineyards. Agricultural Systems 177, 102706.CrossRefGoogle Scholar
Heimpel, GE and Jervis, MA (2005) Does floral nectar improve biological control by parasitoids? In Wäckers, F, van Rijn, PCJ and Bruin, J (eds), Plant-provided Food for Carnivorous Insects: A Protective Mutualism and its Applications. Cambridge, UK: Cambridge University Press, pp. 267304.CrossRefGoogle Scholar
ICOMOS (2001) Alto Douro, Portugal no. 1046. Advisory Body Evaluation. Available at whc.unesco.org/en/list/1046/documents/.Google Scholar
Ijala, AR, Kyamanywa, S, Cherukut, S, Sebatta, C and Karungi, J (2019) Parasitism of Hypothenemus hampei (Coleoptera: Scolytidae) in different farming systems and altitudes of Mount Elgon, Uganda. Journal of Applied Entomology 143, 11221131.CrossRefGoogle Scholar
Ioriatti, C, Anfora, G, Tasin, M, De Cristofaro, A, Witzgall, P and Lucchi, A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology 104, 11251137.CrossRefGoogle Scholar
Irvin, NA, Hagler, JR and Hoddle, MS (2018) Measuring natural enemy dispersal from cover crops in a California vineyard. Biological Control 126, 1525.CrossRefGoogle Scholar
Jones, GV and Alves, F (2012) Impact of climate change on wine production: a global overview and regional assessment in the Douro valley of Portugal. International Journal of Global Warming 4, 383406.CrossRefGoogle Scholar
Judt, C, Guzmán, G, Gómez, JA, Cabezas, JM, Entrenas, JA, Winter, S, Zaller, JG and Paredes, D (2019) Diverging effects of landscape factors and inter-row management on the abundance of beneficial and herbivorous arthropods in Andalusian vineyards (Spain). Insects 10, 320.CrossRefGoogle Scholar
Landis, DA, Gardiner, MM and Tompkins, J (2012) Using native plant species to diversify agriculture. In Gurr, GM, Wratten, SD, Snyder, WE and Read, DMY (eds), Biodiversity and Insect Pests: Key Issues for Sustainable Management. New Jersey, USA: Wiley-Blackwell, pp. 276308.CrossRefGoogle Scholar
Lavandero, B, Wratten, SD, Shishehbor, P and Worner, S (2005) Enhancing the effectiveness of Diadegma semiclausum (Helen): quantifying movement after use of nectar in the field. Biological Control 34, 152158.CrossRefGoogle Scholar
Lee, JC, Andow, DA and Heimpel, GE (2006) Influence of floral resources on sugar feeding and nutrient dynamics of a parasitoid in the field. Ecological Entomology 31, 470480.CrossRefGoogle Scholar
Lichtenberg, EM, Kennedy, CM, Kremen, C, Batáry, P, Berendse, F, Bommarco, R, Bosque-Pérez, NA, Carvalheiro, LG, Snyder, WE, Williams, NM, Winfree, R, Klatt, BK, Åström, S, Benjamin, F, Brittain, C, Chaplin-Kramer, R, Clough, Y, Danforth, B, Diekötter, T, Eigenbrode, SD, Ekroos, J, Elle, E, Freitas, BM, Fukuda, Y, Gaines-Day, HR, Grab, H, Gratton, C, Holzschuh, A, Isaacs, R, Isaia, M, Jha, S, Jonason, D, Jones, VP, Klein, A-M, Krauss, J, Letourneau, DK, Macfadyen, S, Mallinger, RE, Martin, EA, Martinez, E, Memmott, J, Morandin, L, Neame, L, Otieno, M, Park, MG, Pfiffner, L, Pocock, MJO, Ponce, C, Potts, SG, Poveda, K, Ramos, M, Rosenheim, JA, Rundlöf, M, Sardiñas, H, Saunders, ME, Schon, NL, Sciligo, AR, Sidhu, CS, Steffan-Dewenter, I, Tscharntke, T, Veselý, M, Weisser, WW, Wilson, JK and Crowder, DW (2017) A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology 23, 49464957.CrossRefGoogle ScholarPubMed
Loni, A, Samartsev, KG, Scaramozzino, PL, Belokobylskij, SA and Lucchi, A (2016) Braconinae parasitoids (Hymenoptera, Braconidae) emerged from larvae of Lobesia botrana (Denis & Schiffermüller) (Lepidoptera. Tortricidae) feeding on Daphne gnidium L. ZooKeys 587, 125150.CrossRefGoogle Scholar
Lu, ZX, Zhu, PY, Gurr, GM, Zheng, XS, Read, DMY, Heong, KL, Yang, YJ and Xu, HX (2014) Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: prospects for enhanced use in agriculture. Insect Science 21, 112.CrossRefGoogle ScholarPubMed
Martinez, M (2011) Clé d'identification des familles, genres et/ou espèces de diptères auxiliaires, parasitoides ou prédateurs des principaux inscets nuisibles à la vigne. In Sentenac, G (ed.), La faune auxiliaire des Vignobles de France. Paris, France: France Agricole, pp. 119140.Google Scholar
Martín-Vertedor, D, Ferrero-García, JJ and Torres-Vila, LM (2010) Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agricultural and Forest Entomology 12, 169176.CrossRefGoogle Scholar
Masi, L (1911) Diagnosi di specie nuove di chalcididi. Bollettino della Società Zoologica Italiana 12, 235240.Google Scholar
Mitroiu, MD (2013) Fauna Europaea: Hymenoptera: Chalcidoidea. Fauna Europaea version 2.6. Available at http://www.fauna-eu.org.Google Scholar
Möller, G, Keasar, T, Shapira, I, Möller, D, Ferrante, M and Segoli, M (2021) Effect of weed management on the parasitoid community in Mediterranean vineyards. Biology 10, 7.CrossRefGoogle Scholar
Moosavi, FK, Cargnus, E, Pavan, F and Zandigiacomo, P (2017) Mortality of eggs and newly hatched larvae of Lobesia botrana (Lepidoptera: Tortricidae) exposed to high temperatures in the laboratory. Environmental Entomology 46, 700707.CrossRefGoogle Scholar
Moreau, J, Villemant, C, Benrey, B and Thiéry, D (2010) Species diversity of larval parasitoids of the European grapevine moth (Lobesia botrana, Lepidoptera: Tortricidae): the influence of region and cultivar. Biological Control 54, 300306.CrossRefGoogle Scholar
Myers, N, Mittermeier, RA, Mittermeier, CG, da Fonseca, GAB and Kent, J (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853858.CrossRefGoogle ScholarPubMed
Noyes, JS (2020) Universal Chalcidoidea Database. World Wide Web electronic publication. Available at http://www.nhm.ac.uk/chalcidoids.Google Scholar
Oliveira, B, Barata, A, Prates, A, Mendes, F, Bento, F, Gaspar, L and Cavaco, M (2014) Protecção Integrada das Culturas. Vol. III. Efeitos Secundários dos Produtos. Lisbon: DGAV.Google Scholar
Poveda, K, Gomez, MI and Martinez, E (2008) Diversification practices: their effect on pest regulation and production. Revista Colombiana de Entomología 34, 131144.CrossRefGoogle Scholar
Prosdocimi, M, Cerdà, A and Tarolli, P (2016) Soil water erosion on Mediterranean vineyards: a review. Catena 141, 121.CrossRefGoogle Scholar
R Development Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at www.R-project.org.Google Scholar
Ribeiro, JJA, Martins, F, Mendonça, TR and Lavadinho, AMP (2001) Natural parasitism of Lobesia botrana during the hibernation period in the region of Vinhos Verdes. IOBC/WPRS Bulletin 24, 117120.Google Scholar
Roehrich, R and Böller, E (1991) Tortricids in vineyards. In Van der Gesst, LPS and Evenhuis, HH (eds), Tortricid Pests, Their Biology Natural Enemies and Control. Amsterdam, The Netherlands: Elsevier, pp. 507514.Google Scholar
Rusch, A, Bommarco, R and Ekbom, B (2017 a) Conservation biological control in agricultural landscapes. In Sauvion, N, Calatayud, PA and Thiéry, D (eds), Insect Plant Interactions in A Crop Protection Perspective. Cambridge, USA, Academic Press. Advances in Botany Research 81, 333360.CrossRefGoogle Scholar
Rusch, A, Delbac, L and Thiéry, D (2017 b) Grape moth density in Bordeaux vineyards depends on local habitat management despite effects of landscape heterogeneity on their biological control. Journal of Applied Ecology 54, 17941803.CrossRefGoogle Scholar
Scaramozzino, PL, Loni, A and Lucchi, A (2017) A review of insect parasitoids associated with Lobesia botrana (Denis & Schiffermüller, 1775) in Italy. 1. Diptera Tachinidae and Hymenoptera Braconidae (Lepidoptera, Tortricidae). ZooKeys 647, 67100.Google Scholar
Scaramozzino, PL, Di Giovanni, F, Loni, A, Ricciardi, R and Lucchi, A (2018) Updated list of the insect parasitoids (Insecta, Hymenoptera) associated with Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera, Tortricidae) in Italy. 2. Hymenoptera, Ichneumonidae, Anomaloninae and Campopleginae. ZooKeys 772, 4795.CrossRefGoogle Scholar
Scarratt, SL, Wratten, SD and Shishehbor, P (2008) Measuring parasitoid movement from floral resources in a vineyard. Biological Control 46, 107113.CrossRefGoogle Scholar
Schauff, ME (1985) Taxonomic study of the Nearctic species of Elachertus Spinola (Hymenoptera: Eulophidae). Proceedings of the Entomological Society of Washington 87, 843858.Google Scholar
Segoli, M, Kishinevsky, M, Rozenberg, T and Hoffmann, I (2020) Parasitoid abundance and community composition in desert vineyards and their adjacent natural habitats. Insects 11, 580.CrossRefGoogle ScholarPubMed
Shapira, I, Gavish-Regev, E, Sharon, R, Harari, AR, Kishinevsky, M and Keasar, T (2018) Habitat use by crop pests and natural enemies in a Mediterranean vineyard agroecosystem. Agriculture, Ecosystems & Environment 27, 109118.CrossRefGoogle Scholar
Silvestri, F (1912) Contribuzioni alla conoscenza degli insetti dannosi e dei loro simbioti. III. La tignoletta dell'uva (Polychrosis botrana Schiff.) con un cenno sulla tignola dell'uva (Conchylis ambiguella Hb.). Bolletino del Laboratorio di Zoologia Generale e Agraria della R. Scuola Superiore d'Agricoltura in Portici 6, 246307.Google Scholar
Smith, I, Hoffmann, AA and Thomson, LJ (2015) Ground cover and floral resources in shelterbelts increase the abundance of beneficial hymenopteran families. Agricultural and Forest Entomology 17, 120128.CrossRefGoogle Scholar
Tamburini, G, Bommarco, R, Wanger, TC, Kremen, C, van der Heijden, MGA, Liebman, M and Hallin, S (2020) Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances 6, eaba1715.CrossRefGoogle ScholarPubMed
Thacker, JRM (2002) An Introduction to Arthropod Pest Control. Cambridge: University Press.Google Scholar
Thiéry, D (2008) Les tordeuses nuisibles à la vigne. Bordeaux: Féret Publication.Google Scholar
Thiéry, D, Delbac, L, Villemant, C and Moreau, J (2011) Control of grape berry moth larvae using parasitoids: should it be developed? Integrated protection and production in viticulture. IOBC/WPRS Bulletin 67, 189196.Google Scholar
Thomson, LJ and Hoffmann, AA (2006) Field validation of laboratory-derived IOBC toxicity ratings for natural enemies in commercial vineyards. Biological Control 39, 507515.CrossRefGoogle Scholar
Thomson, LJ and Hoffmann, AA (2009) Vegetation increases the abundance of natural enemies in vineyards. Biological Control 49, 259269.CrossRefGoogle Scholar
Thomson, LJ and Hoffmann, AA (2013) Spatial scale of benefits from adjacent woody vegetation on natural enemies within vineyards. Biological Control 64, 5765.CrossRefGoogle Scholar
Thomson, LJ, McKenzie, J, Sharley, DJ, Nash, MA, Tsitsilas, A and Hoffmann, AA (2010) Effect of woody vegetation at the landscape scale on the abundance of natural enemies in Australian vineyards. Biological Control 54, 248254.CrossRefGoogle Scholar
Tillman, PG, Smith, HA and Holland, JM (2012) Cover crops and related methods for enhancing agricultural biodiversity and conservation biocontrol: successful case studies. In Gurr, GM, Wratten, SD, Snyder, WE and Read, DMY (eds), Biodiversity and Insect Pests: Key Issues for Sustainable Management. New Jersey, USA: John Wiley & Sons, pp. 309327.CrossRefGoogle Scholar
Tryapitsyn, VA (1988) Family Bethylidae (Bethylids). In Tryapitsyn, VA (ed.), Keys to the Insects of the European Part of the URSS. Leiden, The Netherlands: EJ Brill, pp. 319.Google Scholar
Viers, JH, Williams, JN, Nicholas, KA, Barbosa, O, Kotzé, I, Spence, L, Webb, LB, Merenlender, A and Reynolds, M (2013) Vinecology: pairing wine with nature. Conservation Letters 6, 287299.CrossRefGoogle Scholar
Villemant, C and Delvare, G (2011) Clé simplifiée d'identification des espèces d'Hyménoptères parasitoïdes des Tortricidae de la vigne. In Sentenac, G (ed.), La faune auxiliaire des Vignobles de France. Paris, France: France Agricole, pp. 292311.Google Scholar
Villemant, C, Delvare, G, Martinez, M, Sentenac, G and Kuntzmann, P (2011) Parasitoïdes de tordeuses. In Sentenac, G (ed.), La faune auxiliaire des Vignobles de France. Paris, France: France Agricole, pp. 119140.Google Scholar
Xuéreb, A and Thiéry, D (2006) Does natural larval parasitism of Lobesia botrana (Lepidoptera: Tortricidae) vary between years, generation, density of the host and vine cultivar? Bulletin of Entomological Research 96, 105110.CrossRefGoogle ScholarPubMed
Yarahmadi, F, Salehi, Z and Lotfalizadeh, H (2016) Two species of the genus Elachertus Spinola (Hym.: Eulophidae) new larval ectoparasitoids of Tuta absoluta (Meyreck) (Lep.: Gelechidae). Journal of Crop Protection 5, 413418.CrossRefGoogle Scholar
Supplementary material: File

Carlos et al. supplementary material

Carlos et al. supplementary material 1

Download Carlos et al. supplementary material(File)
File 45.2 KB
Supplementary material: File

Carlos et al. supplementary material

Carlos et al. supplementary material 2

Download Carlos et al. supplementary material(File)
File 19.9 KB
Supplementary material: File

Carlos et al. supplementary material

Carlos et al. supplementary material 3

Download Carlos et al. supplementary material(File)
File 58.9 KB
Supplementary material: File

Carlos et al. supplementary material

Carlos et al. supplementary material 4

Download Carlos et al. supplementary material(File)
File 45.6 KB