Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T21:47:41.872Z Has data issue: false hasContentIssue false

Anatomical, morphological, and physiological responses of two sugarcane genotypes of contrasting susceptibility to Mahanarva fimbriolata (Hemiptera: Cercopidae)

Published online by Cambridge University Press:  23 November 2017

C.G. Melo
Affiliation:
Department of Plant Sciences, Universidade Federal de Viçosa, Avenue pH Rolphs, s/n, Viçosa- MG, 36570-000, Brazil
A.C. Tomaz*
Affiliation:
Department of Plant Sciences, Universidade Federal de Viçosa, Avenue pH Rolphs, s/n, Viçosa- MG, 36570-000, Brazil
B.O. Soares
Affiliation:
Department of Plant Sciences, Universidade Federal de Viçosa, Avenue pH Rolphs, s/n, Viçosa- MG, 36570-000, Brazil
K.N. Kuki
Affiliation:
Department of Plant Sciences, Universidade Federal de Viçosa, Avenue pH Rolphs, s/n, Viçosa- MG, 36570-000, Brazil
L.A. Peternelli
Affiliation:
Department of Statistics, Universidade Federal de Viçosa, Av. pH Rolphs, s/n, Viçosa- MG, 36570-000, Brazil
M.H. Pereira Barbosa
Affiliation:
Department of Plant Sciences, Universidade Federal de Viçosa, Avenue pH Rolphs, s/n, Viçosa- MG, 36570-000, Brazil
*
*Author for correspondence: Phone: +553138991114 Fax: +553138992614 E-mail: adrianotomaz86@gmail.com

Abstract

The purpose of this study was to investigate and compare root morpho-anatomical traits and physiological responses of susceptible (SP81–3250) and resistant (H. Kawandang) sugarcane genotypes exposed to the attack by nymphs of spittlebug Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae). Two experiments were conducted to compare the damage caused by spittlebug nymphs on fresh and dry biomass weight; lignin content in stalks; root anatomy; chlorophyll content; photosynthetic rate (A); carboxylation efficiency (A/Ci); stomatal conductance (gS) and transpiration rate (E) of these genotypes. SP81–3250 consistently obtained significantly higher damage scores than H. Kawandang in both experiments, confirming the previously observed level of resistance in each genotype. Attack by spittlebug nymphs had a much higher effect on both fresh and dry biomass weight, chlorophyll content, A, A/Ci, gs and E of SP81–3250, than that on H. Kawandang. Anatomical studies indicated the presence of aerenchyma tissue in the root cortex of SP81–3250, a feature which may facilitate penetration of the nymph's stylet into the vascular cylinder. In contrast, roots of H. Kawandang are characterized by having more dense and compact parenchyma cells. In addition, infested plants of this genotype contained an unidentified mucilaginous compound in the vascular cylinder of the roots. We conclude that resistance of H. Kawandang to spittlebug is related to the ability of this genotype to maintain normal chlorophyll content, as well as stomatal conductance and photosynthesis, thus, allowing for biomass accumulation under spittlebug attack, in contrast to SP81–3250. In addition, the presence of more compact and denser parenchymal cells, as well as that of an induced mucilaginous compound in the root's vascular cylinder, are likely to hinder host-feeding activity in nymphs, causing higher nymph mortality and therefore, reduced damage in plants of this genotype.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assis, C. (2014) Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos. Ms Thesis, Federal University of Viçosa, Viçosa, MG, 72p.Google Scholar
Cardona, C., Miles, J.W. & Sotelo, G. (1999) An improved methodology for massive screening of Brachiaria spp. genotypes for resistance to Aeneolamia varia (Homoptera: Cercopidae). Journal of Economic Entomology 92, 490496.CrossRefGoogle Scholar
Cardona, C., Fory, P., Sotelo, G., Pabon, A., Diaz, G. & Miles, J.W. (2004) Antibiosis and tolerance to five species of spittlebug (Homoptera: Cercopidae) in Brachiaria spp: implications for breeding for resistance. Journal of Economic Entomology 97, 635645.Google Scholar
Cheavegatti-Gianotto, A., de Abreu, H.M.C., Arruda, P., Bespalhok Filho, J.C., Burnquist, W.L., Creste, S., di Ciero, L., Ferro, J.A., de Oliveira Figueira, A.V., de Sousa Filgueiras, T. & de Fátima Grossi-de-Sá, M. (2011) Sugarcane (Saccharum X officinarum): a reference study for the regulation of genetically modified cultivars in Brazil. Tropical Plant Biology 4, 6289.Google Scholar
Dinardo-Miranda, L.L., Pivetta, J.P. & Fracasso, J.V. (2008) Economic injury level for sugarcane caused by the spittlebug Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae). Scientia Agricola 65, 1624.Google Scholar
Dinardo-Miranda, L.L., da Costa, V.P., Fracasso, J.V., Perecin, D., de Oliveira, M.C., Izeppi, T.S. & Lopes, D.O.P. (2014) Resistance of sugarcane cultivars to Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae). Neotropical Entomology 43, 9095.Google Scholar
Dinardo-Miranda, L.L., Fracasso, J.V., Perecin, D., Oliveira, M.C.D., Lopes, D.O.P., Izeppi, T.S. & Anjos, I.A.D. (2016) Resistance mechanisms of sugarcane cultivars to spittlebug Mahanarva fimbriolata. Scientia Agricola 73, 115124.Google Scholar
Franzen, L.D., Gutsche, A.R., Heng-Moss, T.M., Higley, L.G., Sarath, G. & Burd, J.D. (2007) Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid. Journal of Economic Entomology 100, 16921703.CrossRefGoogle ScholarPubMed
Garcia, J.F., Grisoto, E., Botelho, P.S.M., Parra, J.R.P. & Appezzato-da-Glória, B. (2007 a) Feeding site of the spittlebug Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae) on sugarcane. Scientia Agricola 64, 555557.Google Scholar
Garcia, J.F., Botelho, P.S.M. & Parra, J.R.P. (2007 b) Laboratory rearing technique of Mahanarva fimbriolata (Stål) (Hemiptera: cercopidae). Scientia Agricola 64, 7376.CrossRefGoogle Scholar
Garcia, J.F., Prado, S.S., Vendramim, J.D., Botelho, M. & Paulo, S. (2011) Effect of sugarcane varieties on the development of Mahanarva fimbriolata (Hemiptera: Cercopidae). Revista Colombiana de Entomología 37, 1620.Google Scholar
Golan, K., Rubinowska, K., Kmieć, K., Kot, I., Górska-Drabik, E., Łagowska, B. & Michałek, W. (2015) Impact of scale insect infestation on the content of photosynthetic pigments and chlorophyll fluorescence in two host plant species. Arthropod-Plant Interactions 9, 5565.Google Scholar
Gonçalves, E.R., Ferreira, V.M., Silva, J.V., Endres, L., Barbosa, T.P. & Duarte, W.D.G. (2010) Trocas gasosas e fluorescência da clorofila a em variedades de cana-de-açúcar submetidas à deficiência hídrica. Revista Brasileira de Engenharia Agrícola e Ambiental 14, 378386.Google Scholar
Guimarães, E.R., Mutton, M.A., Ferro, M.I.T., Silva, J.A., Mutton, M.J.R., Kalaki, D.B. & Madaleno, L.L. (2007) Evidence of sugarcane resistance against Mahanarva fimbriolata (Stål, 1854) (Hemiptera: Cercopidae). In ISSCT CONGRESS.Google Scholar
Gutsche, A.R., Heng-Moss, T.M., Higley, L.G., Sarath, G. & Mornhinweg, D.W. (2009) Physiological responses of resistant and susceptible barley, Hordeum vulgare to the Russian wheat aphid, Diurpahis noxia (Mordvilko). Arthropod-Plant Interactions 3, 233240.Google Scholar
Huang, J., Zhang, P.J., Zhang, J., Lu, Y.B., Huang, F. & Li, M.J. (2013) Chlorophyll content and chlorophyll fluorescence in tomato leaves infested with an invasive mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Environmental Entomology 42, 973979.Google Scholar
Karnovsky, M.J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology 27, 137138.Google Scholar
Li, Q., Tan, W., Xue, M., Zhao, H. & Wang, C (2013) Dynamic changes in photosynthesis and chlorophyll fluorescence in Nicotiana tabacum infested by Bemisia tabaci (Middle East–Asia Minor 1) nymphs. Arthropod-Plant Interactions 7, 431443.Google Scholar
López, F., Cardona, C., Miles, J.W., Sotelo, G. & Montoya, J. (2009) Screening for resistance to adult spittlebugs (Hemiptera: Cercopidae) in Brachiaria spp.: methods and categories of resistance. Journal of Economic Entomology 102, 13091316.CrossRefGoogle ScholarPubMed
Madaleno, L.L., Ravaneli, G.C., Presotti, L.E., Mutton, M.A., Fernandes, O.A. & Mutton, M.J. (2008) Influence of Mahanarva fimbriolata (Stål)(Hemiptera: Cercopidae) injury on the quality of cane juice. Neotropical Entomology 37, 6873.Google Scholar
Medeiros, D.B., Silva, E.C.D., Nogueira, R.J.M.C., Teixeira, M.M. & Buckeridge, M.S. (2013) Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theoretical and Experimental Plant Physiology 25, 213222.Google Scholar
O'Brien, T.P. & McCully, M.E. (1981) The Study of Plant Structure Principles and Selected Methods. Melbourne, AUS, Termarcarphi Pty Ltd.Google Scholar
Ravaneli, G.C., Garcia, D.B., Madaleno, L.L., Mutton, M.Â., Stupiello, J.P. & Mutton, M.J.R. (2011) Spittlebug impacts on sugarcane quality and ethanol production. Pesquisa Agropecuária Brasileira 46, 120129.Google Scholar
Resende, T.T., Auad, A.M. & Fonseca, M.G. (2014) How many adults of Mahanarva spectabilis (Hemiptera: Cercopidae) should be used for screening Brachiaria ruziziensis (Poales: Poaceae) resistance? Journal of Economic Entomology 107, 396402.CrossRefGoogle ScholarPubMed
R Core Team (2016) R: A Language and Environment for Statistical Computing. Vienna, AUT, R Foundation for Statistical Computing. Available online at https://www.R-project.org/Google Scholar
Schoonhoven, L.M., Van Loon, J.J. & Dicke, M. (2005) Insect-plant Biology. Oxford, UK, Oxford University Press on Demand.CrossRefGoogle Scholar
Silva, R.J.N.D., Guimarães, E.R., Garcia, J.F., Botelho, P.S.M., Ferro, M.I.T., Mutton, M.A. & Mutton, M.J.R. (2005) Infestation of froghopper nymphs changes the amounts of total phenolics in sugarcane. Scientia Agricola 62, 543546.CrossRefGoogle Scholar
Smith, C.M. (2005) Plant Resistance to Arthropods: Molecular and Conventional Approaches. AA Dordrecht, The Netherlands, Springer Science & Business Media.Google Scholar
Thimmaiah, K.K., Panchal, Y.C., Kadapa, S.N. & Prabhakar, A.S.N. (1994) Comparative anatomical studies in insect pest resistant and susceptible cotton genotypes. Journal of Agricultural Science 7, 410416.Google Scholar
Valverde, A.H.P. (2012) Screening for resistance and identification of tolerance in sugarcane genotypes to spittlebug Mahanarva fimbriolata. PhD thesis, Federal University of Viçosa.Google Scholar