Skip to main content

Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites

  • J. Sipos (a1) (a2), J. Hodecek (a3), T. Kuras (a4) and A. Dolny (a3)

Although ecological succession is one of the principal focuses of recent restoration ecology research, it is still unclear which factors drive this process and positively influence species richness and functional diversity. In this study we sought to elucidate how species traits and functional diversity change during forest succession, and to identify important factors that determine the species in the observed assemblages. We analyzed species richness and functional diversity of ground beetle assemblages in relation to succession on post-industrial localities after habitat deterioration caused by spoil deposition. We selected ground beetles as they are known to be sensitive to landscape changes (with a large range of responses), and their taxonomy and ecology are generally well-known. Ground beetles were sampled on the spoil heaps during the last 30 years when spontaneous succession occurred. To calculate functional diversity, we used traits related to habitat and trophic niche, i.e. food specialization, wing morphology, trophic level, and bio-indication value. Ground beetle species were found to be distributed non-randomly in the assemblages in the late phase of succession. Ordination analyses revealed that the ground beetle assemblage was significantly associated with the proportion of forested area. Environmental heterogeneity generated assemblages that contained over-dispersed species traits. Our findings indicated that environmental conditions at late successional stages supported less mobile carnivorous species. Overall, we conclude that the decline in species richness and functional diversity in the middle of the studied succession gradient indicated that the assemblages of open habitats had been replaced by species typical of forest ecosystems.

Corresponding author
*Author for correspondence Phone: +420737777513 Fax: +420596120478 E-mail:
Hide All
Bartemucci P., Messier C. & Canham C.D. (2006) Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Canadian Journal of Forest Research 36, 20652079.
Bihn J.H., Gebauer G. & Brandl R. (2010) Loss of functional diversity of ant assemblages in secondary tropical forest. Ecology 91, 782792. DOI: 10.1890/08-1276.1.
De Vasconcelos H.L. (1990) Effects of litter collection by understory palms on the associated macroinvertebrate fauna in central Amazonia. Pedobiologia 34, 157160.
Díaz S. & Cabido M. (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16, 646655. DOI: 10.1016/S0169-5347(01)02283-2.
Duflot R., Georges R., Ernoult A., Aviron S. & Burel F. (2014) Landscape heterogeneity as an ecological filter of species traits. Acta Oecologica, 56, 1926. DOI: 10.1016/j.actao.2014.01.004.
Farias A.A. & Jaksic F.M. (2011) Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe Island, Chile. Journal of Animal Ecology 80, 809817.
Fournier B., Gillet F., Le Bayon R.C., Mitchell E.A.D., & Moretti M. (2015) Functional responses of multitaxa communities to disturbance and stress gradients in a restored floodplain. Journal of Applied Ecology 52, 1364–1363. DOI: 10.1111/1365-2664.12493.
Franklin J. & Van Pelt R. (2004) Spatial aspect of structural complexity in old-growth forests. Journal of Forestry 102, 2228.
Gerisch M. (2014) Non-random patterns of functional redundancy revealed in ground beetle communities facing an extreme flood event. Functional Ecology 28, 15041512. DOI: 10.1111/1365-2435.12272.
Gerisch M., Agostinelli V., Henle K. & Dziock F. (2012) More species, but all do the same: contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121, 508515. DOI: 10.1111/j.1600-0706.2011.19749.x.
Gerlach J., Samways M. & Pryke J. (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. Journal of Insect Conservation 17, 831850. DOI: 10.1007/s10841-013-9565-9.
Gibb H., Johansson T., Stenbacka F. & Hjätlén J. (2013) Functional roles affect diversity-succession relationships for boreal beetles. PLoS ONE 8, 114. DOI: 10.1371/journal.pone.0072764.
Gotelli N.J. & Colwell R.K. (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379391.
Hodecek J., Kuras T., Sipos J. & Dolny A. (2015) Post-industrial areas as successional habitats: long-term changes of functional diversity in beetle communities. Basic and Applied Ecology 16, 629640. DOI: 10.1016/j.baae.2015.06.004.
Hurka K. (1996) Carabidae of the Czech and Slovak Republics – Illustrated Key. Zlín, Kabourek.
Hurka K., Vesely P., Farkac J. (1996) Vyuziti strevlikovitych (Coleoptera: carabidae) k indikaci kvality prostredi [The use of ground beetles (Coleoptera: carabidae) as bioindicators]. Klapalekiana 32, 1526.
Hutchinson G.E. (1957) Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology 22, 415427.
Jocque M., Field R., Brendonck L. & De Meester L. (2010) Climatic control of dispersal–ecological specialization trade-offs: a metacommunity process at the heart of the latitudinal diversity gradient? Global Ecology and Biogeography 19, 244252. DOI: 10.1111/j.1466-8238.2009.00510.x.
Kara Ö., Bolat İ., Çakiroğlu K. & Öztürk M. (2008) Plant canopy effect on litter accumulation and soil microbial biomass in two temperate forests. Biology and Fertility of Soils 45, 193198. DOI: 10.1007/s00374-008-0327-x.
Kašák J., Mazalová M., Šipoš J. & Kuras T. (2015) Dwarf pine: invasive plant threatens biodiversity of alpine beetles. Biodiversity and Conservation 24, 23992415. DOI: 10.1007/s10531-015-0929-1.
Katayama N., Amano T., Naoe S., Yamakita T., Komatsu I., Takagawa S., Sato N., Ueta M. & Miyashita T. (2014) Landscape heterogeneity–biodiversity relationship: effect of range size. PLoS ONE 9, 18.
Kromp B. (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems & Environment 74, 187228. DOI: 10.1016/S0167-8809(99)00037-7.
Kruess A. & Tscharntke T. (1994) Habitat fragmentation, species loss, and biological control. Science 264, 15811584. DOI: 10.1126/science.264.5165.1581.
Kusch J. (2005) Effects of patch type and food specializations on fine spatial scale community patterns of nocturnal forest associated Lepidoptera. Journal of Research on the Lepidoptera 38, 6777.
Laliberté E. & Legendre P. (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299305.
Lavorel S., Grigulis K., McIntyre S., Williams N.S.G., Garden D., Dorrough J., Berman S., Quétier F., Thébault A. & Bonis A. (2008) Assessing functional diversity in the field - methodology matters! Functional Ecology 22, 134147.
Lavorel S. & Garnier E. (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16, 545556. DOI: 10.1046/j.1365-2435.2002.00664.x.
Lavorel S., Grigulis K., Lamarque P., Colace M., Garden D., Girel J., Pellet G. & Douzet R. (2010) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology 99, 135147. DOI: 10.1111/j.1365-2745.2010.01753.x.
Lindroth C.H. (1992) Ground Beetles (Carabidae) of Fennoscandia. A Zoogeographic Study. Washington, Smithsonian Institute Libraries and the National Science Foundation.
Lohbeck M., Poorter L., Paz H., Pla L., van Breugel M., Ramos M.M. & Bongers F. (2012) Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics 14, 8996. DOI: 10.1016/j.ppees.2011.10.002.
Lortie C.J., Brooker R.W., Choler P., Kikvidze Z., Michalet R., Pugnaire F.I. & Callaway R.M. (2004) Rethinking plant community theory. Oikos 107, 433438.
Mason N.W.H., Mouillot D., Lee W.G. & Wilson J.B. (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112118. DOI: 10.1111/j.0030-1299.2005.13886.x.
Menge B.A. & Sutherland J.P. (1976) Species diversity gradients: synthesis of the roles of predation, competition, and temporal heterogeneity. American Naturalist 110, 351369. DOI: 10.1086/283073.
Mouchet M.A., Villeger S., Mason N.W.H. & Mouillot D. (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24, 867876. DOI: 10.1111/j.1365-2435.2010.01695.x.
Niemelä J. (1999) Management in relation to disturbance in the boreal forest. Forest Ecology and Management 115, 127134. DOI: 10.1016/S0378-1127(98)00393-4.
Niemelä J. (2001) Carabid beetles (Coleoptera, Carabidae) and habitat fragmentation: a review. European Journal of Entomology 98, 127132. DOI: 10.14411/eje.2001.023.
Niemelä J., Langor D. & Spence J.R. (1993) Effects of clear-cut harvesting on boreal ground-beetle assemblages (Coleoptera: Carabidae) in western Canada. Conservation Biology 7, 551561. DOI: 10.1046/j.1523-1739.1993.07030551.x.
Niemelä J., Spence J.R., Langor D., Haila Y. & Tukia H. (1994) Logging and boreal ground-beetle assemblages on two continents: implications for conservation. pp. 2950 in Gaston K., Samways M., New T. (Eds) Perspectives in Insect Conservation. Andover, Intercept.
Parker G.G. (1995) Structure and microclimate of forest canopies. pp. 73106 in Lowman M.D., Nadkarni N.M. (Eds) Forest canopies. San Diego, Academic Press.
Paquin P. (2008) Carabid beetle (Coleoptera: Carabidae) diversity in the black spruce succession of eastern Canada. Biological Conservation 141, 261275. DOI: 10.1016/j.biocon.2007.10.001.
Purschke O., Schmid B.C., Sykes M.T., Poschlod P., Michalski S.G., Durka W., Kühn I., Winter M. & Prentice H.C. (2013) Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes. Journal of Ecology 101, 857866. DOI: 10.1111/1365-2745.12098.
R Development Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria, the R Foundation for Statistical Computing.
Rainio J. & Niemelä J. (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation 12, 487506. DOI: 10.1023/A:1022412617568.
Ribera I., Dolédec S., Downie I.S. & Foster G.N. (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82, 11121129. DOI: 10.1890/0012-9658(2001)082[1112:EOLDAS]2.0.CO;2.
Ricotta C. & Moretti M. (2011) CWM and Rao's quadratic diversity: a unified framework for functional ecology. Oecologia 167, 181188. DOI: 10.1007/s00442-011-1965-5.
Roscher C., Schumacher J., Gubsch M., Lipowsky A., Weigelt A., Buchmann A., Schmid B. & Schulze E. (2012) Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7, 111. DOI: 10.1371/journal.pone.0036760.
Schwerk A. & Szyszko J. (2011) Model of succession in degraded areas based on carabid beetles (Coleoptera, Carabidae). ZooKeys 100, 319332.
Shibuya S., Kubota K., Ohsawa M. & Kikvidze Z. (2011) Assembly rules for ground beetle communities: what determines community structure, environmental factors or competition? European Journal of Entomolology 108, 453459. DOI: 10.14411/eje.2011.058.
Shibuya S., Kikvidze Z., Toki W., Kanazawa Y., Suizu T., Yajima T., Fujimori T., Mansournia M.R., Sule Z., Kubota K. & Fukuda K. (2014) Ground beetle community in suburban Satoyama — A case study onwing type and body size under small scale management. Journal of Asia-Pacific Entomology 17, 775780. DOI: 10.1016/j.aspen.2014.07.013.
Slezak V., Hora P. & Tuff I.H. (2010) Effect of pitfall-trapping on the abundance of epigeic macrofauna – preliminary results. Acta Societatis Zooligicae Bohemicae 74, 129133.
Southwood T.R.E. (1977) Habitat, the templet for ecological strategies? Journal of Animal Ecology 46, 337365. DOI: 10.2307/3817.
Stanovsky J. & Pulpan J. (2006) Strevlikoviti Brouci Slezska (severovychodni Moravy) [The Ground Beetles of Silesia (Northeastern Moravia)]. Frydek-Mistek, Muzeum Beskyd.
ter Braak C.J.F. & Smilauer P. (2012) Canoco Reference Manual and User's Guide: Software for Ordination, Version 5.0. Ithaca, USA, Microcomputer Power.
Tilman D., Knops J., Wedin D., Reich D., Ritchie M. & Siemann E. (1997) The influence of functional diversity and composition on ecosystem processes. Science 277, 13001302. DOI: 10.1126/science.277.5330.1300.
Walker L.R. (2012) The Biology of Disturbed Habitats. Oxford, Oxford University Press.
Walker L.R. & Moral R. (2003) Primary Succession and Ecosystem Rehabilitation. Cambridge, Cambridge University Press.
Wayman R.B. & North M. (2007) Initial response of a mixed-conifer understory plant community to burning and thinning restoration treatments. Forest Ecology and Management 239, 3244. DOI: 10.1016/j.foreco.2006.11.011.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Entomological Research
  • ISSN: 0007-4853
  • EISSN: 1475-2670
  • URL: /core/journals/bulletin-of-entomological-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Sipos supplementary material
Sipos supplementary material 1

 Excel (20 KB)
20 KB


Full text views

Total number of HTML views: 9
Total number of PDF views: 47 *
Loading metrics...

Abstract views

Total abstract views: 282 *
Loading metrics...

* Views captured on Cambridge Core between 31st January 2017 - 24th November 2017. This data will be updated every 24 hours.