Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T17:12:55.828Z Has data issue: false hasContentIssue false

The feasibility and efficacy of early-season releases of a generalist predator (Forficula auricularia L.) to control populations of the RAA (Dysaphis plantaginea Passerini) in Southeastern France

Published online by Cambridge University Press:  19 January 2016

H. Dib*
Affiliation:
Faculty of Agriculture, Department of Plant Protection/Biological Control Studies and Research Center, University of Damascus, Damascus, Syria
M. Jamont
Affiliation:
INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Domaine St Paul, Site Agroparc, 84914 Avignon Cedex 9, France
B. Sauphanor
Affiliation:
INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Domaine St Paul, Site Agroparc, 84914 Avignon Cedex 9, France
Y. Capowiez
Affiliation:
INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Domaine St Paul, Site Agroparc, 84914 Avignon Cedex 9, France
*
*Author for correspondence Phone: +963 934 297545 Fax: +963 115 116352 E-mail: hazem802005@yahoo.com

Abstract

Augmentative biological control is not commonly used in commercial orchards. We used an exclusion system to evaluate the potential of early-season releases of the European earwig (Forficula auricularia L., Dermaptera: Forficulidae) for control of the rosy apple aphid (Dysaphis plantaginea Passerini, Hemiptera: Aphididae) in the spring of 2009 in two pesticide-free apple orchards. In order to conduct this experiment we successfully reared earwigs with a high survival rate of nymphs (more than 96%) which may have commercial application. There were three treatments in the study: (i) a ‘release treatment’ where we confined the released earwigs in the canopy by using a barrier system; (ii) an ‘exclusion treatment’ where we blocked free access of earwigs into the canopy using the same barrier system; and (iii) a ‘control treatment’ that represented the natural situation. Contrary to expectations, earwig releases did not reduce D. plantaginea populations. In general, the abundance of natural enemies and their groups did not differ significantly among treatments, except for earwigs. We observed that the exclusion systems we used successfully kept both earwigs and ants away from tree canopies; total numbers on trees in the ‘exclusion treatment’ were significantly lower than on the other two treatments. Due to the complexity and difficulty of evaluating augmentative releases of natural enemies in open orchard conditions, we conclude that new technical approaches to control site conditions are needed when conducting such studies.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boos, S., Meunier, J., Pichon, S. & Kölliker, M. (2014) Maternal care provides antifungal protection to eggs in the European earwig. Behavioral Ecology 25, 754761.CrossRefGoogle Scholar
Brown, M.W. & Mathews, C.R. (2007) Conservation biological control of rosy apple aphid, Dysaphis plantaginea (Passerini), in Eastern North America. Environmental Entomology 36, 11311139.CrossRefGoogle ScholarPubMed
Burnip, G.M., Daly, J.M., Hackett, J.K. & Suckling, D.M. (2002) European earwig phenology and effect of understorey management on population estimation. New Zealand Plant Protection 55, 390395.Google Scholar
Collier, T. & Van Steenwyk, R. (2004) A critical evaluation of augmentative biological control. Biological Control 31, 245256.Google Scholar
Dib, H. (2010) Rôle des ennemis naturels dans la lutte biologique contre le puceron cendré, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) en vergers de pommiers. Thèse de Doctorat, Université d'Avignon et des Pays de Vaucluse, France, p.252.Google Scholar
Dib, H., Simon, S., Sauphanor, B. & Capowiez, Y. (2010 a) The role of natural enemies on the population dynamics of the rosy apple aphid, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) in organic apple orchards in south-eastern France. Biological Control 55, 97109.CrossRefGoogle Scholar
Dib, H., Sauphanor, B. & Capowiez, Y. (2010 b) Effect of codling moth exclusion nets on the rosy apple aphid, Dysaphis plantaginea, and its control by natural enemies. Crop Protection 29, 15021513.Google Scholar
Dib, H., Jamont, M., Sauphanor, B. & Capowiez, Y. (2011) Predation potency and intraguild interactions between generalist (Forficula auricularia) and specialist (Episyrphus balteatus) predators of the rosy apple aphid (Dysaphis plantaginea). Biological Control 59, 9097.Google Scholar
Dib, H., Sauphanor, B. & Capowiez, Y. (2016) Effect of management strategies on arthropod communities in the colonies of rosy apple aphid, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) in south-eastern France. Agriculture, Ecosystems and Environment 216, 203206.Google Scholar
Kehrli, P. & Wyss, E. (2001) Effects of augmentative releases of the coccinellid, Adalia bipunctata, and of insecticide treatments in autumn on the spring population of aphids of the genus Dysaphis in apple orchards. Entomologia Experimentalis et Applicata 99, 245252.Google Scholar
Kölliker, M. & Vancassel, M. (2007) Maternal attendance and the maintenance of family groups in common earwigs (Forficula auricularia): a field experiment. Ecological Entomology 32, 2427.CrossRefGoogle Scholar
Lamb, R.J. & Wellington, W.G. (1975) Life history and population characteristics of the European earwig Forficula auricularia (Dermaptera: Forficulidae), at Vancouver British Columbia. Canadian Entomologist 107, 819824.CrossRefGoogle Scholar
Logan, D.P., Maher, B.J., Connolly, P.G. & Pettigrew, M.J. (2007) Effect of cardboard shelter traps on predation of diaspidid scale insects by European earwig, Forficula auricularia, in kiwifruit. New Zealand Plant Protection 60, 241248.CrossRefGoogle Scholar
Lucas, E. (2005) Intraguild predation among aphidophagous predators. European Journal of Entomology 102, 351364.CrossRefGoogle Scholar
Miñarro, M., Hemptinne, J.L. & Dapena, E. (2005) Colonization of apple orchards by predators of Dysaphis plantaginea: sequential arrival, response to prey abundance and consequences for biological control. BioControl 50, 403414.CrossRefGoogle Scholar
Moerkens, R., Leirs, H., Peusens, G. & Gobin, B. (2009) Are populations of European earwigs, Forficula auricularia, density dependent? Entomologia Experimentalis et Applicata 130, 198206.CrossRefGoogle Scholar
Moerkens, R., Gobin, B., Peusens, G., Helsen, H., Hilton, R., Dib, H., Suckling, D.M. & Leirs, H. (2011) Optimizing biocontrol using phenological day degree models: the European earwig in pipfruit orchards. Agricultural and Forest Entomology 13, 301312.Google Scholar
Nicholas, A.H., Spooner-Hart, R.N. & Vickers, R.A. (2005) Abundance and natural control of the woolly aphid Eriosoma lanigerum in an Australian apple orchard IPM program. BioControl 50, 271291.CrossRefGoogle Scholar
Piñol, J., Espadaler, X., Pérez, N. & Cañellas, N. (2009 a) Effects of the concurrent exclusion of ants and earwigs on aphid abundance in an organic citrus grove. BioControl 54, 515527.CrossRefGoogle Scholar
Piñol, J., Espadaler, X., Pérez, N. & Beven, K. (2009 b) Testing a new model of aphid abundance with sedentary and non-sedentary predators. Ecological Modelling 229, 24692480.CrossRefGoogle Scholar
Reimer, N.J., Cope, M.L. & Yasuda, G. (1993) Interference of Pheidole megacephala (Hymenoptera: Formicidae) with biological control of Coccus viridis (Homoptera: Coccidae) in coffee. Environmental Entomology 22, 483488.Google Scholar
Romet, L. & Severac, G. (2008) Alt'Carpo, une alternative efficace (suite et pas fin!). Phytoma – La Défense des Végétaux 612, 1620.Google Scholar
Romeu-Dalmau, C., Espadaler, X. & Piñol, J. (2010) A simple method to differentially exclude ants from tree canopies based on ant body size. Methods in Ecology and Evolution 1, 188191.Google Scholar
Sauphanor, B., Blaisinger, P. & Sureau, F. (1992) Méthode de laboratoire pour evaluer l'effet des pesticides sur Forficula auricularia L. (Dermaptera: Forficulidae). IOBC/wprs Bulletin 15, 117121.Google Scholar
Sauphanor, B., Chabrol, L., Faivre d'Arcier, F., Sureau, F. & Lenfant, C. (1993) Side effects of diflubenzuron on a pear psylla predator: Forficula auricularia . Entomophaga 38, 163174.Google Scholar
Skinner, G.J. & Whittaker, J.B. (1981) An experimental investigation of interrelationships between the wood and Formica rufa and some tree canopy herbivores. Journal of Animal Ecology 50, 313326.Google Scholar
Solomon, M.G., Cross, J.V., Fitzgerald, J.D., Campbell, C.A.M., Jolly, R.L., Olszak, R.W., Niemczyk, E. & Vogt, H. (2000) Biocontrol of pests of apples and pears in Northern and Central Europe – 3. Predators. Biocontrol Science and Technology 10, 91128.Google Scholar
Stadler, B. & Dixon, A.F.G. (1999) Ant attendance in aphids: why different degrees of myrmecophily? Ecological Entomology 24, 363369.Google Scholar
Suckling, D.M., Burnip, G.M., Hackett, J. & Daly, J.C. (2006) Frass sampling and baiting indicate European earwig (Forficula auricularia) foraging in orchards. Journal of Applied Entomology 130, 263267.Google Scholar
Sunderland, K.D. (1988) Carabidae and other invertebrates. pp. 293310 in Minks, A.K. & Harrewijn, P. (Eds) World Crop Pests – Aphids their Biology, Natural Enemies and Control, Vol. 2B, Elsevier, Amsterdam.Google Scholar
van Lenteren, J.C., Roskam, M.M. & Timmer, R. (1997) Commercial mass production and pricing of organisms for biological control of pests in Europe. Biological Control 10, 143149.Google Scholar
Völkl, W. (1992) Aphids or their parasitoids: who actually benefits from ant tending? Journal of Animal Ecology 61, 273281.Google Scholar
Walker, K.A., Jones, T.H. & Fell, R.D. (1993) Pheromonal basis of aggregation in European earwig, Forficula auricularia L. (Dermaptera, Forficulidae). Journal of Chemical Ecology 19, 20292038.Google Scholar
Wyss, E., Villiger, M., Hemptinne, J.L. & Müller-Schärer, H. (1999) Effects of augmentative releases of eggs and larvae of the ladybird beetle, Adalia bipunctata, on the abundance of the rosy apple aphid, Dysaphis plantaginea, in organic apple orchards. Entomologia Experimentalis et Applicata 90, 167173.CrossRefGoogle Scholar