Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-05T00:34:57.360Z Has data issue: false hasContentIssue false

The enzyme-linked immunosorbent assay (ELISA) test for the identification of blood-meals of haematophagous insects

Published online by Cambridge University Press:  10 July 2009

M. W. Service
Affiliation:
Liverpool School of Tropical Medicine, Department of Medical Entomology, Liverpool, L3 5QA, UK
A. Voller
Affiliation:
London School of Hygiene and Tropical Medicine, Gower Street, London, WC1E 7HT, UK
D. E. Bidwell
Affiliation:
The Institute of Zoology, Regents Park, London, NW1 4RY, UK

Abstract

A sandwich enzyme-linked immunosorbent assay (ELISA) test was developed to detect blood-meals in insects and identify the host fed on. The test proved both sensitive and specific. Very small quantities of fresh blood (about 0·02 μl) can be detected; in practice, this enables blood in mosquitoes which are about three-quarters gravid to be identified. In trials in both Zambia and Britain, positive reactions were easily identified visually; consequently, this enabled the ELISA technique to be used as a routine field test. In addition to those of mosquitoes, blood-meals of a few Culicoides species were also successfully identified.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boorman, J., Mellor, P. S., Boreham,, P. F. L. & Hewett, R. S. (1977). A latex agglutination test for the identification of blood-meals of Culicoides (Diptera: Ceratopogonidae).—Bull. ent. Res. 67, 305311.CrossRefGoogle Scholar
Bray, R. S., Gill, G. S. & Killick-Kendrick, R. (1984). Current and possible future techniques for the identification of blood meals of vector haematophagous arthropods.—5 pp. Geneva, Wld Hlth Org. (WHO/VBC/84.905).Google Scholar
Burkot, T. R., Goodman, W. G. & DeFoliart, G. R. (1981). Identification of mosquito blood meals by enzyme-linked immunosorbent assay.—Am. J. trop. Med. Hyg. 30, 13361341.CrossRefGoogle ScholarPubMed
Downe, A. E. R. (1975). Internal regulation of rate of digestion of blood meals in the mosquito, Aedes aegypti.J. Insect Physiol. 21, 18351839.CrossRefGoogle ScholarPubMed
Downe, A. E. R. & Archer, J. A. (1975). The effects of different blood-meal sources on digestion and egg production in Culex tarsalis Coq. (Diptera: Culicidae).—J. med. Entomol. 12, 431437.CrossRefGoogle ScholarPubMed
Edman, J. D. (1970). Rate of digestion of vertebrate blood in Aedes aegypti (L.). Effect of age, mating, and parity.—Am. J. trop. Med. Hyg. 19, 10311033.CrossRefGoogle ScholarPubMed
Edrissian, G. H. & Hafizi, A. (1982). Application of enzyme-linked immunosorbent assay (ELISA) to identification of Anopheles mosquito bloodmeals.—Trans. R. Soc. trop. Med. Hyg. 76, 5456.CrossRefGoogle ScholarPubMed
Eligh, G. S. (1952). Factors influencing the performance of the precipitin test in the determination of blood meals of insects.—Can. J. Zool. 30, 213218.CrossRefGoogle Scholar
Gentry, J. W., Moore, C. G. & Hayes, D. E. (1967). Preliminary report on soluble antigen fluorescent antibody technique for identification of host source of mosquito blood meals.—Mosquito News 27, 141143.Google Scholar
Gooding, R. H. (1972). Digestive processes of haematophagous insects, I. A literature review.—Quaest. entomol. 8, 560.Google Scholar
Kamiyama, T., Katsube, Y. & Imaizumi, K. (1978). Serological identification of animal species of meat using species-specific anti-serum albumin antibodies obtained by immunoadsorbent chromatography.—Jap. J. vet. Sci. 40, 663669.CrossRefGoogle ScholarPubMed
Lindqvist, K. J., Gathuma, J. M. & Kaburia, H. F. A. (1982). Analysis of blood meals of haematophagous insects by haemagglutination inhibition and enzyme immunoassay.—pp. 122133in Tukei, P. M. & Njogu, A. R. (Eds.). Current medical research in eastern Africa with emphasis on zoonoses and waterborne diseases. Proceedings of 3rd Annual Medical Conference, Nairobi, Kenya, 1982.—287 pp. Nairobi, Afroscience International.Google Scholar
Linthicum, K. J., Kaburia, H. F. A., Davies, F. G. & Lindqvist, K. J. (1985). A blood meal analysis of engorged mosquitoes found in Rift Valley fever epizootics areas in Kenya.—Journal of the American Mosquito Control Association 1, 9395.Google Scholar
McKinney, R. M., Spillane, J. T. & Holden, P. (1972). Mosquito blood meals: identification by a fluorescent antibody method.—Am. J. trop. Med. Hyg. 21, 9991003.CrossRefGoogle ScholarPubMed
Muirhead-Thomson, R. C. (1951). Mosquito behaviour in relation to malaria transmission and control in the tropics.—219 pp. London, Edward Arnold.Google Scholar
Murray, M. D. (1970). The identification of blood meals in biting midges, (Culicoides:Ceratopogonidae).—Ann. trop. Med. Parasit. 64, 115122.CrossRefGoogle ScholarPubMed
O’Gower, A. K. (1956). The rate of digestion of human blood by certain species of mosquitoes.—Aust. J. biol. Sci. 9, 125129.CrossRefGoogle Scholar
Service, M. W. (1968a). Observations on feeding and oviposition in some British mosquitoes.—Entomologia exp. appl. 11, 277285.CrossRefGoogle Scholar
Service, M. W. (1968b). Blood digestion and oviposition in Culicoides impunctatus Goetghebuer and C. obsoletus (Meigen) (Diptera, Ceratopogonidae).—Ann. trop. Med. Parasit. 62, 325330.CrossRefGoogle Scholar
Shlenova, M. F. (1938). Speed of digestion of blood by the female of Anopheles maculipennis messeae at constant effective temperatures [in Russian].—Medskaya Parazit. 7, 716735.Google Scholar
Staak, C., Allmang, B., Kämpe, U. & Mehlitz, D. (1981). The complement fixation test for the species identification of blood meals from tsetse flies.—Tropenmed. & Parasitol. 32, 9798.Google Scholar
Voller, A., Bidwell, D. E. & Bartlett, A. (1980). Enzyme linked immunoabsorbent assay.—pp. 359371 in Rose, R. N. & Friedman, H. (Eds.). Manual of clinical immunology.—2nd edn, 1105 pp. Washington, DC, Am. Soc. Microbiol.Google Scholar
Washino, R. K. & Tempelis, C. H. (1983). Mosquito host bloodmeal identification: methodology and data analysis.—A. Rev. Ent. 28, 179201.CrossRefGoogle ScholarPubMed
Weitz, B. (1957). An automatic dispenser for multiple serological titrations.—J. clin. Path. 10, 200.CrossRefGoogle ScholarPubMed
Wilson, M. B. & Nakane, P. K. (1978). Developments in the periodate method of conjugating horseradish perioxidase to antibodies.—pp. 215–225 in Knapp, W., Holubar, K. & Wick, G. (Eds.). Immunofluorescence and related techniques.—363 pp. Amsterdam, Elsevier.Google Scholar