Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T11:22:30.878Z Has data issue: false hasContentIssue false

Fitness costs associated with field-evolved resistance to chlorantraniliprole in Plutella xylostella (Lepidoptera: Plutellidae)

Published online by Cambridge University Press:  08 November 2013

L.M.S. Ribeiro
Affiliation:
Departamento de Agronomia – (Entomologia), Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
V. Wanderley-Teixeira
Affiliation:
Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
H.N. Ferreira
Affiliation:
Departamento de Agronomia – (Entomologia), Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
Á.A.C. Teixeira
Affiliation:
Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
H.A.A. Siqueira*
Affiliation:
Departamento de Agronomia – (Entomologia), Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
*
*Author for correspondence Phone: +55 (81) 3320-6234 Fax: +55 (81) 3320-6205 E-mail: siqueira@depa.ufrpe.br

Abstract

Plutella xylostella (L.) is the most important pest of Brassicaceae worldwide, with a recent estimate of US$ 4–5 billion expenditure for the control of this insect. A case of very high resistance of this pest to chlorantraniliprole was recently associated with reduced efficacy in a Brazilian field of Brassica spp. Although diamide resistance has been characterized, the fitness of insects due to such resistance has yet to be examined. Therefore, in this study, biological parameters were assessed in both susceptible and resistant strains of P. xylostella subjected to sublethal chlorantraniliprole concentrations. The field strain showed high resistance to chlorantraniliprole (RR50=27,793-fold), although resistance rapidly decreased in the first generations, showing instability. The exposure of susceptible and resistant larvae to their respective LC1, LC10, and LC25 values led to an increased duration of the larval and pupae phases and reduced weight in both strains; however, no significant differences in pupal viability across the treatments were observed. The resistant insects presented significantly lower larval weight and fecundity and higher larval and pupal periods, hatchability, and male longevity when not exposed to chlorantraniliprole, suggesting a fitness cost associated with resistance. In addition, resistant females showed a significantly higher egg-laying period and longevity at LC25, whereas the males lived longer at LC1. Chlorantraniliprole negatively impacted the biological parameters of both strains tested, although these effects were more relevant to the resistant insects. Resistant P. xylostella showed negative and positive biological trade-offs when compared with the susceptible individuals in both the absence and presence of chlorantraniliprole. Despite the important role that these trade-offs may play in the evolution of resistance to chlorantraniliprole, practical applications still depend on such information as the dominance of fitness costs and resistance.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Ako, M., Borgemeister, C., Poehling, H.-M., Elbert, A. & Nauen, R. (2004) Effects of Neonicotinoid Insecticides on the Bionomics of Twospotted Spider Mite (Acari: Tetranychidae). Journal of Economic Entomology 97, 15871594.CrossRefGoogle Scholar
Alyokhin, A.V. & Ferro, D.N. (1999) Relative fitness of Colorado Potato Beetle (Coleoptera: Chrysomelidae) resistant and susceptible to the Bacillus thuringiensis Cry3A toxin. Journal of Economic Entomology 92, 510515.CrossRefGoogle Scholar
Aragão, F., Feitosa, F.A.A., Moraes, C.P. & Corrêa, M.C.M. (2008) Sistema de produção de repolho utilizando TNT como mulching e manta. Available online at http://www.cnpat.embrapa.br/sbsp/anais/Trab_Format_PDF/237.pdf (accessed 12/08/2012).Google Scholar
Brugger, K.E., Cole, P.G., Newman, I.C., Parker, N., Scholz, B., Suvagia, P., Walker, G. & Hammond, T.G. (2010) Selectivity of chlorantraniliprole to parasitoid wasps. Pest Management Science 66, 10751081.CrossRefGoogle ScholarPubMed
Castelo Branco, M. & Medeiros, M.A. (2001) Impacto de inseticidas sobre parasitóides da traça-das-crucíferas em repolho, no Distrito Federal. Pesquisa Agropecuaria Brasileira 36, 0713.Google Scholar
Cordova, D., Benner, E.A., Sacher, M.D., Rauh, J.J., Sopa, J.S., Lahm, G.P., Selby, T.P., Stevenson, T.M., Flexner, L., Gutteridge, S., Rhoades, D.F., Wu, L., Smith, R.M. & Tao, Y. (2006) Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesticide Biochemistry and Physiology 84, 196214.Google Scholar
FAOSTAT (2011) Production statistics. Available online at http://faostat.fao.org/site/567/default.aspx#ancor (accessed September 2013).Google Scholar
Finney, D.J. (1971) Probit Analysis London. England, Cambridge University Press.Google Scholar
Fournier, D., Pralavorio, M., Coulon, J. & Berge, J.B. (1988) Fitness comparison in Phytoseiulus persimilis strains resistant and susceptible to methidathion. Experimental and Applied Acarology 5, 5564.Google Scholar
Gassmann, A.J., Carrière, Y. & Tabashnik, B.E. (2009) Fitness costs of insect resistance to Bacillus thuringiensis . Annual Review of Entomology 54, 147163.Google Scholar
Georghiou, G.P. (1983) Management of resistance in arthropods pp. 769792 in Georghiou, G.P. & Saito, T. (Eds) Pest Resistance to Pesticides: Challenges and Prospects. New York, Plenum press.CrossRefGoogle Scholar
Groeters, F.R., Tabashnik, B.E., Finson, N. & Johnson, M.W. (1993) Resistance to Bacillus thuringiensis Affects mating success of the diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 86, 10351039.CrossRefGoogle Scholar
Han, W., Zhang, S., Shen, F., Liu, M., Ren, C. & Gao, X. (2012) Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (lepidoptera: plutellidae). Pest Management Science 68, 11841190.CrossRefGoogle ScholarPubMed
Haubruge, E. & Arnaud, L. (2001) Fitness consequences of Malathion-specific resistance in red flour beetle (Coleoptera: Tenebrionidae) and selection for resistance in the absence of Malathion. Journal of Economic Entomology 94, 552557.Google Scholar
Hoffmann, A.A. & Parsons, P.A. (1991) Evolutionary Genetics and Environmental Stress. New York, NY, Oxford University Press.Google Scholar
Hollingsworth, R.G., Tabashnik, B.E., Johnson, M.W., Messing, R.H. & Ullman, D.E. (1997) Relationship between susceptibility to insecticides and fecundity across populations of cotton aphid (Homoptera: Aphididae). Journal of Economic Entomology 90, 5558.CrossRefGoogle Scholar
James, D.G. & Price, T.S. (2002) Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. Journal of Economic Entomology 95, 729732.Google Scholar
Jia, B., Liu, Y., Zhu, Y.C., Liu, X., Gao, C. & Shen, J. (2009) Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pest Management Science 65, 9961002.Google Scholar
Khaliq, A., Attique, M.N.R. & Sayyed, A.H. (2007) Evidence for resistance to pyrethroids and organophosphates in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Bulletin of Entomological Research 97, 191200.CrossRefGoogle ScholarPubMed
Knight, A.L. & Flexner, L. (2007) Disruption of mating in codling moth (Lepidoptera: Tortricidae) by chlorantranilipole, an anthranilic diamide insecticide. Pest Management Science 63, 180189.Google Scholar
Lahm, G.P., Stevenson, T.M., Selby, T.P., Freudenberger, J.H., Cordova, D., Flexner, L., Bellin, C.A., Dubas, C.M., Smith, B.K., Hughes, K.A., Hollingshaus, J.G., Clark, C.E. & Benner, E.A. (2007) Rynaxypyr™: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorganic and Medicinal Chemistry Letters 17, 62746279.Google Scholar
Lai, T. & Su, J. (2011) Effects of chlorantraniliprole on development and reproduction of beet armyworm, Spodoptera exigua (Hübner). Journal of Pest Science 84, 381386.CrossRefGoogle Scholar
LeOra-Software (2005) POLO-Plus, POLO for Windows Petaluma, CA, LeOra Software.Google Scholar
Liang, G.M., Chen, W. & Liu, T.X. (2003) Effects of three neem-based insecticides on diamondback moth (Lepidoptera: Plutellidae). Crop Protection 22, 333340.CrossRefGoogle Scholar
Medeiros, A. (2002) O controle biológico de insetos-praga e sua aplicação em cultivos de hortaliças. Brasília, DF, Embrapa Hortaliças.Google Scholar
Mohan, M. & Gujar, G.T. (2003) Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Protection 22, 495504.CrossRefGoogle Scholar
Monnerat, R.G., Leal-Bertioli, S.C.M., Bertioli, D.J., Butt, T.M. & Bordat, D. (2004) Caracterização de populações geograficamente distintas da traça-das-crucíferas por susceptibilidade ao Bacillus thuringiensis Berliner e RAPD-PCR. Horticultura Brasileira 22, 607609.CrossRefGoogle Scholar
Mota-Sanchez, D., Bills, P.S. & Whalon, M.E. (2002) Arthropod Resistance to Pesticides: Status and Overview pp. 241272 in Wheeler, W.B. (Ed) Pesticides in Agriculture and the Environment. Gainesville, FL, Marcel Decker.Google Scholar
Oliveira, A.C., Siqueira, H.Á.A., Oliveira, J.V., Silva, J.E. & Michereff Filho, M. (2011) Resistance of Brazilian diamondback moth populations to insecticides. Scientia Agricola 68, 154159.Google Scholar
Rice, W.R. (1989) Analyzing tables of statistical tests. Evolution 43, 223225.CrossRefGoogle ScholarPubMed
Robertson, J.L., Russell, R.M., Preisler, H.K. & Savin, N.E. (2007) Bioassays with Arthropods. Boca Raton, FL, CRC Press.Google Scholar
Roush, R.T. & McKenzie, J.A. (1987) Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology 32, 361380.CrossRefGoogle ScholarPubMed
Santos, V.C., Siqueira, H.A.A., Silva, J.E. & Farias, M.J.D.C. (2011) Insecticide resistance in populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), from the State of Pernambuco, Brazil. Neotropical Entomology 40, 264270.CrossRefGoogle ScholarPubMed
Sarfraz, M. & Keddie, B.A. (2005) Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lep., Plutellidae). Journal of Applied Entomology 129, 149157.CrossRefGoogle Scholar
SAS Institute (2001) SAS/STAT User's guide, version 8.02, TS level 2MO Cary, NC.Google Scholar
Shelton, A.M., Perez, C.J., Tang, J.D. & Vandenberg, J. (1997) Prospects for novel approaches towards management of the diamondback moth pp. 1722 in Sivapragasm, A., Loke, W.H., Hussan, A.K. & Lim, G.S. (Eds) The Management of Diamondback Moth and Other Crucifer Pests. Kuala Lumpur, Malaysian Agricultural Research and Development Institute.Google Scholar
Shelton, A.M., Sances, F.V., Hawley, J., Tang, J.D., Boune, M., Jungers, D., Collins, H.L. & Farias, J. (2000) Assessment of insecticide resistance after the outbreak of diamondback moth (Lepidoptera: Plutellidae) in California in 1997. Journal of Economic Entomology 93, 931936.Google Scholar
Silva, J.E., Siqueira, H.A.A., Silva, T.B.M., Campos, M.R. & Barros, R. (2012) Baseline susceptibility to chlorantraniliprole of Brazilian populations of Plutella xylostella . Crop Protection 35, 97101.CrossRefGoogle Scholar
Sun, J., Liang, P. & Gao, X. (2012) Cross-resistance patterns and fitness in fufenozide-resistant diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Pest Management Science 68, 285289.CrossRefGoogle ScholarPubMed
Tabashnik, B.E., Finson, N., Groeters, F.R., Moar, W.J., Johnson, M.W., Luo, K. & Adang, M.J. (1994) Reversal of resistance to Bacillus thuringiensis in Plutella xylostella . Proceedings of the National Academy of Sciences of the United States of America 91, 41204124.Google Scholar
Talekar, N.S. & Shelton, A.M. (1993) Biology, ecology, and management of the diamondback moth. Annual Review of Entomology 38, 275301.Google Scholar
Teixeira, L.A.F., Gut, L.J., Wise, J.C. & Isaacs, R. (2009) Lethal and sublethal effects of chlorantraniliprole on three species of Rhagoletis fruit flies (Diptera: Tephritidae). Pest Management Science 65, 137143.CrossRefGoogle Scholar
Troczka, B., Zimmer, C.T., Elias, J., Schorn, C., Bass, C., Emyr Davies, T.G., Field, L.M., Williamson, M.S., Slater, R. & Nauen, R. (2012) Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochemistry and Molecular Biology 42, 873880.CrossRefGoogle ScholarPubMed
Wang, X. & Wu, Y. (2012) High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella . Journal of Economic Entomology 105, 10191023.CrossRefGoogle ScholarPubMed
Wang, X., Khakame, S.K., Ye, C., Yang, Y. & Wu, Y. (2012) Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Management Science 69, 661665.Google Scholar
Wyss, C.F., Young, H.P., Shukla, J. & Roe, R.M. (2003) Biology and genetics of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), highly resistant to spinosad. Crop Protection 22, 307314.Google Scholar
Xu, X.L., Xu, D.J., Xu, G.C. & Gu, Z.Y. (2010) Sublethal effects of chlorantraniliprole on Spodoptera exigua (Lepidoptera: Noctuidae). Jiangsu Journal of Agricultural Sciences 1, 139140.Google Scholar
Yin, X.-H., Wu, Q.-J., Li, X.-F., Zhang, Y.-J. & Xu, B.-Y. (2009) Demographic changes in multigeneration Plutella xylostella (Lepidoptera: Plutellidae) after exposure to sublethal concentrations of spinosad. Journal of Economic Entomology 102, 357365.CrossRefGoogle ScholarPubMed
Yu, S.J. & Nguyen, S.N. (1992) Detection and biochemical characterization of insecticide resistance in the diamondback moth. Pesticide Biochemistry and Physiology 44, 7481.CrossRefGoogle Scholar
Yu-ping, Z., Yong-yue, L., Ling, Z. & Guang-wen, L. (2010) Life-history traits and population relative fitness of trichlorphon-resistant and -susceptible Bactrocera dorsalis (Diptera: Tephritidae). Psyche 2010, 18.CrossRefGoogle Scholar
Zago, H.B., Siqueira, H.Á.A., Pereira, E.J.G., Picanço, M.C., Barros, R. (2013) Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Pest Management Science DOI: 10.1002/ps.3600.Google Scholar