Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T02:01:13.872Z Has data issue: false hasContentIssue false

Lethal effect of Goniozus legneri on Cactoblastis cactorum: A potential biocontrol agent for inundative releases

Published online by Cambridge University Press:  25 January 2024

Laura Varone*
Affiliation:
Fundación para el Estudio de Especies Invasivas, Hurlingham, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Ana Faltlhauser
Affiliation:
Fundación para el Estudio de Especies Invasivas, Hurlingham, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Malena Fuentes Corona
Affiliation:
Fundación para el Estudio de Especies Invasivas, Hurlingham, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Silvina Garrido
Affiliation:
Estación Experimental Agropecuaria, INTA – Alto Valle, General Roca, Río Negro, Argentina
Liliana Cichón
Affiliation:
Estación Experimental Agropecuaria, INTA – Alto Valle, General Roca, Río Negro, Argentina
María Carla Cecere
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina FCEyN-EGE-IEGEBA. Universidad de Buenos Aires, Buenos Aires, Argentina
Stephen D. Hight
Affiliation:
USDA-ARS (retired), Tallahassee, Florida, USA
Octavio Bruzzone
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina IFAB, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, Bariloche, Argentina
*
Corresponding author: Laura Varone; Email: lauvarone@fuedei.org

Abstract

Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), the cactus moth, is native to South America with a widespread distribution in Argentina. The larvae consume the interior of Opuntia spp. (Cactaceae) plants. The moth was used as a biocontrol agent against invasive non-native Opuntia spp. in many countries around the world. The cactus moth arrived unintentionally in Florida, USA, expanded its range and threatened Opuntia-based agriculture and natural ecosystems in southern North America. The insect is also a pest of cultivated O. ficus-indica L. in Argentina. An endemic South American parasitoid, Goniozus legneri Gordth (Hymenoptera: Bethylidae), is used in inundative biological control programmes against lepidopteran pests. The goal of this work was to evaluate G. legneri as a biocontrol agent to be used in inundative releases against C. cactorum. Mortality of C. cactorum by G. legneri was assessed at different spatial scales, as well as the interactions with Apanteles opuntiarum Martínez & Berta (Hymenoptera: Braconidae), a common Argentine natural enemy of C. cactorum. The ability of G. legneri to paralyse, parasitise and kill C. cactorum was confirmed. The paralysis inflicted on C. cactorum larvae reduced larval damage to the plants by 85%. Using two parasitoid species increased the mortality of C. cactorum larvae, but it was highly dependent on the order of their arrival. The combined mortality caused by both parasitoids was higher than a single one, in particular when G. legneri arrived first (56 ± 1%), suggesting asymmetric competition due to the preference of G. legneri attacking previously parasitised larvae. Goniozus legneri has potential as an inundative biocontrol agent of C. cactorum, but its interaction with the classical biocontrol agent A. opuntiarum needs to be considered.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, MB, Bruzzone, OA, Triapitsyn, SV, Hight, SD and Logarzo, GA (2021) Influence of competition and intraguild predation between two candidate biocontrol parasitoids on their potential impact against Harrisia cactus mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). Scientific Reports 11, 111.CrossRefGoogle ScholarPubMed
Aleosfoor, M, Ehteshami, F and Fekrat, L (2014) A six-arm olfactometer for analysing olfactory responses of Goniozus legneri Gordh (Hymenoptera: Bethylidae), the larval ectoparasitoid of carob moth. Journal of Entomological and Acarological Research 46, 119122.CrossRefGoogle Scholar
Balasubramanian, J (2017) Host–parasitoid interaction and behavior of Goniozus legneri (Gordh), an external parasite of the mango leaf webber, Orthaga exvinacea (Hampson). Indian Journal of Scientific Research 12, 036040.Google Scholar
Briano, J, Varone, L, Logarzo, G and Villamil, C (2012) Extended geographical distribution and host range of the cactus moth, Cactoblastis cactorum (Lepidoptera: Pyralidae), in Argentina. The Florida Entomologist 95, 233237.CrossRefGoogle Scholar
Bruzzone, OA, Logarzo, GA, Aguirre, MB and Virla, EG (2018) Intra-host interspecific larval parasitoid competition solved using modelling and Bayesian statistics. Ecological Modelling 385, 114123.CrossRefGoogle Scholar
Butler, GD Jr and Schmidt, KM (1985) Goniozus legneri (Hymenoptera: Bethylidae): development, oviposition, and longevity in relation to temperature. Annals of the Entomological Society of America 78, 373375.CrossRefGoogle Scholar
Costi, E, Bella, ED, Iotti, D and Maistrello, L (2022) Biocontrol implications of multiparasitism by Trissolcus mitsukurii and Trissolcus japonicus on the invasive brown marmorated stink bug. Entomologia Experimentalis et Applicata 170, 772781.CrossRefGoogle Scholar
Cox, DR and Snell, EJ (2018) Analysis of Binary Data. New York: Routledge. https://doi.org/10.1201/9781315137391Google Scholar
DeBach, P (1966) The competitive displacement and coexistence principles. Annual Review of Entomology 11, 183212.CrossRefGoogle Scholar
Denoth, M, Frid, L and Myers, JH (2002) Multiple agents in biological control: improving the odds? Biological Control 24, 2030.CrossRefGoogle Scholar
Di Rienzo, JA, Casanoves, F, Balzarini, MG, Gonzalez, L, Tablada, M and Robledo, CW (2008) InfoStat, versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.Google Scholar
Dickel, TS (1991) Cactoblastis cactorum in Florida (Lepidoptera: Pyralidae: Phycitinae). Tropical Lepidoptera 2, 117118.Google Scholar
Dodd, AP (1940) The biological campaign against prickly pear. Commonwealth Prickly Pear Board, Brisbane, Australia. 177 pp.Google Scholar
El-Basha, NA and Mandour, NS (2006) Effect of Goniozus legneri Gordh (Hymenoptera: Bethylidae) on the life table of Palpita unionalis Hb. (Lepidoptera: Pyralidae). Egyptian Journal of Biological Pest Control 16, 511.Google Scholar
Ervin, GN (2012) Indian fig cactus (Opuntia ficus-indica (L.) Miller) in the Americas: an uncertain history. Haseltonia 17, 7081.CrossRefGoogle Scholar
Folgarait, PJ, Montenegro, GA, Plowes, RM and Gilbert, L (2018) A study of Cactoblastis cactorum (Lepidoptera: Pyralidae) in its native range: further insights into life cycle, larval identification, developmental parameters, natural enemies, and damage to the host plant Opuntia ficus-indica (Caryophyllales: Cactaceae). Florida Entomologist 101, 559572.CrossRefGoogle Scholar
Fuentes Corona, M, Varone, L and Cecere, MC (2021) ¿Cuánto pierde un cultivo de Opuntia ficus-indica si lo visita el gusano de la tuna?. XXIX Reunión Argentina de Ecología. https://www.asaeargentina.com.ar/RAEGoogle Scholar
Garrido, S, Cichón, L, Fernández, D and Azevedo, C (2005) Primera cita de la especie Goniozus legneri (Hymenoptera: Bethylidae) en el Alto Valle de Río Negro, Patagonia Argentina. Revista de la Sociedad Entomológica Argentina 64, 1416.Google Scholar
Garrido, S, Cichón, L, Lago, J and Navarro, D (2018a) El control biológico inundativo y por conservación mediante la utilización de especies nativa. X Congreso Argentino de Entomología. Universidad Nacional de Cuyo. Secretaría de Ciencia, Técnica y Posgrado, 21-24 May 2018 Mendoza, Argentina.Google Scholar
Garrido, S, Cichón, L, Lago, J, Navarro, MD, Herrera, ME and Becerra, V (2018b) Evaluation of the oviposition of Goniozus legneri (Hymenoptera: Bethylidae) on different Lepidoptera of fruit and vegetable interest. Acta Zoologica Lilloana 62(Suplemento), 118121.Google Scholar
Garrido, S, Cichón, L, Claps, L, Lago, J, Navarro, D, Gomez, C and Leonelli, E (2019) Uso de Goniozus legneri (Hymenoptera: Bethylidae) en control biológico inundativo y su incidencia en la reducción de insecticidas en perales. Resúmenes de la VII Reunión Argentina de Parasitoidólogos. Santa Rosa, La Pampa, Argentina. 11–13 Septiembre 2019. Revista de la Facultad de Agronomía UNLPam, pp. 2730.Google Scholar
Gelman, A, Carlin, JB, Stern, HS and Rubin, DB (2003) Hierarchical models. In Chatfield, C, Tanner, M and Zidek, J (eds), Bayesian Data Analysis, 2nd Edn. New York: Chapman and Hall/CRC Press, pp. 120160.CrossRefGoogle Scholar
Gordh, G, Woolley, JB and Medved, RA (1983) Biological studies on Goniozus legneri Gordh (Hymenoptera: Bethylidae) a primary external parasite of the navel orangeworm Amyelois transitella and pink bollworm Pectinophora gossypiella (Lepidoptera: Pyralidae, Gelechiidae). Contributions of the American Entomological Institute 20, 433468.Google Scholar
Harris, CR, Millman, KJ and van der Walt, SJ (2020) Array programming with NumPy. Nature 585, 357362.CrossRefGoogle ScholarPubMed
Hight, SD and Carpenter, JE (2009) Flight phenology of male Cactoblastis cactorum (Lepidoptera: Pyralidae) at different latitudes in the southeastern United States. Florida Entomologist 92, 208216.CrossRefGoogle Scholar
Holling, CS (1959) Some characteristics of simple types of predation and parasitism. The Canadian Entomologist 91, 385398.CrossRefGoogle Scholar
Kiesling, R (1998) Origen, domesticación y distribución de Opuntia ficus-indica. Journal of the Professional Association for Cactus Development 3, 19.Google Scholar
Laumann, RA, Ferrero, AA and Stadler, T (2000) Evaluación en laboratorio de Goniozus legneri Gordh (Hymenoptera: Bethylidae) enemigo natural de Cydia pomonella (L.) (Lepidoptera: Tortricidae) en cultivos de nogal de la provincia de Catamarca, República Argentina. Boletín de Sanidad Vegetal 26, 537550.Google Scholar
Legner, EF and Gordh, G (1992) Lower navel orange worm (Lepidoptera: Phycitidae) population densities following establishment of Goniozus legneri (Hymenoptera: Bethylidae) in California. Journal of Economic Entomology 85, 21532160.CrossRefGoogle Scholar
Legner, EF and Silveira-Guido, A (1983) Establishment of Goniozus emigratus and Goniozus legneri (Hym: Bethylidae) on navel orangeworm, Amyelois transitella (Lep: Phycitidae) in California and biological control potential. Entomophaga 28, 97106.CrossRefGoogle Scholar
Lobos, E (2006) Control de Cactoblastis cactorum Berg, principal plaga de la tuna en Argentina. In Aprovechamiento integral de la tuna. CactusNet 10, 2632.Google Scholar
Magdaraog, PM, Harvey, JA, Tankaka, T and Goles, R (2012) Intrinsic competition among solitary and gregarious endoparasitoid wasps and the phenomenon of ‘resource sharing’. Ecological Entomology 37, 6574.CrossRefGoogle Scholar
Mengoni Goñalons, C, Varone, L, Logarzo, GA, Guala, ME, Rodriguero, M, Hight, SD and Carpenter, JE (2014) Geographical range and laboratory studies on Apanteles opuntiarum (Hymenoptera: Braconidae) in Argentina, a candidate for biological control of Cactoblastis cactorum (Lepidoptera: Pyralidae) in North America. Florida Entomologist 97, 14581468.CrossRefGoogle Scholar
Pedata, PA, Giorgini, M and Guerrieri, E (2002) Interspecific host discrimination and within-host competition between Encarsia formosa and E. pergandiella (Hymenoptera: Aphelinidae), two endoparasitoids of whiteflies (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 92, 521528.CrossRefGoogle Scholar
Pimienta-Barrios, E and Muñoz-Urias, A (1995) Domestication of opuntias and cultivated varieties. Barbera, G, Inglese, P and Pimienta-Barrios, E (eds), Agro-ecology, Cultivation, and Uses of cactus-Pear. Italy: Food and Agriculture Organization of the United Nations, FAO Plant Production and Protection Rome, pp. 5863.Google Scholar
Rodrigues, C, Paula, CD, Lahbouki, S, Meddich, A, Outzourhit, A, Rashad, M, Pari, L, Coelhoso, I, Fernando, AL and Souza, VG (2023) Opuntia spp.: an overview of the bioactive profile and food applications of this versatile crop adapted to arid lands. Foods (basel, Switzerland) 12, 1465.Google ScholarPubMed
Rossbach, A, Löhr, B and Vidal, S (2008) Interspecific competition between Diadegma semiclausum Hellen and Diadegma mollipla (Holmgren), parasitoids of the diamondback moth, Plutella xylostella (L), feeding on a new host plant. Bulletin of Entomological Research 98, 135143.CrossRefGoogle ScholarPubMed
Schwarz, G (1978) Estimating the dimension of a model. The Annals of Statistics 6, 461464. Available at http://www.jstor.org/stable/2958889CrossRefGoogle Scholar
Skinner, WS, Dennis, PA and Quistad, GB (1990) Partial characterization of toxins from Goniozus legneri (Hymenoptera: Bethylidae). Journal of Economic Entomology 83, 733736.CrossRefGoogle Scholar
Soberón, J, Golubov, J and Sarukhán, J (2001) The importance of Opuntia in México and routes of invasion and impact of Cactoblastis cactorum (Lepidoptera: Pyralidae). Florida Entomologist 84, 486492.CrossRefGoogle Scholar
Solis, MA, Hight, SD and Gordon, DR (2004) Tracking the cactus moth, Cactoblastis cactorum Berg., as it flies and eats its way westward in the U.S. News of the Lepidopterist's Society 46, 34.Google Scholar
Srivastava, M, Srivastava, P, Karan, R, Jeyaprakash, A, Whilby, L, Rohrig, E and Varone, L (2019) Molecular detection method developed to track the koinobiont larval parasitoid Apanteles opuntiarum (Hymenoptera: Braconidae) imported from Argentina to control Cactoblastis cactorum (Lepidoptera: Pyralidae). Florida Entomologist 102, 329335.Google Scholar
Starmer, WT, Aberdeen, V and Lachance, MA (1988) The yeast community associated with decaying Opuntia stricta (Haworth) in Florida with regard to the moth, Cactoblastis cactorum (Berg). Florida Scientist 51, 711.Google Scholar
Steiner, AL (1986) Stinging behaviour of solitary wasps. In Piek, T (ed.), Venoms of the Hymenoptera. Biochemical, Pharmacological and Behavioural Aspects. Amsterdam, The Neatherlands: Universitet van Neatherlands, pp. 63148.CrossRefGoogle Scholar
Stiling, P and Cornelissen, T (2005) What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biological Control 34, 236246.CrossRefGoogle Scholar
Ulyshen, MD, Duan, JJ and Bauer, LS (2010) Interactions between Spathius agrili (Hymenoptera: Braconidae) and Tetrastichus planipennisi (Hymenoptera: Eulophidae), larval parasitoids of Agrilus planipennis (Coleoptera: Buprestidae). Biological Control 52, 188193.CrossRefGoogle Scholar
van Lenteren, JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57, 120.CrossRefGoogle Scholar
Van Rossum, G and Drake, FL (2009) Python 3 Reference Manual. Scotts Valley, CA: CreateSpace.Google Scholar
Varone, L, Logarzo, GA, Briano, JA, Hight, SD and Carpenter, JE (2014) Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) use of Opuntia host species in Argentina. Biological Invasions 16, 23672380.CrossRefGoogle Scholar
Varone, L, Logarzo, GA, Martínez, JJ, Navarro, FJ, Carpenter, E and Hight, SD (2015) Field host range of Apanteles opuntiarum (Hymenoptera: Braconidae) in Argentina, a potential biocontrol agent of Cactoblastis cactorum (Lepidoptera: Pyralidae) in North America. Florida Entomologist 98, 803806.CrossRefGoogle Scholar
Varone, L, Aguirre, MB, Lobos, E, Ruiz Pérez, D, Hight, SD, Palottini, F, Guala, M and Logarzo, GA (2019) Causes of mortality at different stages of Cactoblastis cactorum in the native range. BioControl 64, 249261.CrossRefGoogle Scholar
Varone, L, Mengoni Goñalons, C, Faltlhauser, AC, Guala, ME, Wolaver, D, Srivastava, M and Hight, SD (2020) Effect of rearing Cactoblastis cactorum on an artificial diet on the behaviour of Apanteles opuntiarum. Journal of Applied Entomology 144, 278286.CrossRefGoogle Scholar
Virtanen, P, Gommers, R and Oliphant, TE (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17, 261272.CrossRefGoogle ScholarPubMed
Wang, XG, Bokonon-Ganta, AH and Messing, RH (2008) Intrinsic inter-specific competition in a guild of tephritid fruit fly parasitoids: effect of coevolutionary history on competitive superiority. Biological Control 44, 312320.CrossRefGoogle Scholar
Wang, X-Y, Yang, Z-Q, Gould, JR, Wu, H and Ma, J-H (2010) Host-seeking behavior and parasitism by Spathius agrili Yang (Hymenoptera: Braconidae), a parasitoid of the emerald ash borer. Biological Control 52, 2429. https://doi.org/10.1016/j.biocontrol.2009.09.008CrossRefGoogle Scholar
Wilson, H, Burks, CS, Reger, JE and Wenger, JA (2020) Biology and management of navel orangeworm (Lepidoptera: Pyralidae) in California. Journal of Integrated Pest Management 11, 25.CrossRefGoogle Scholar
Yang, S, Duan, JJ, Lelito, J and Van Driesche, R (2013) Multiparasitism by Tetrastichus planipennisi (Hymenoptera: Eulophidae) and Spathius agrili (Hymenoptera: Braconidae): implication for biological control of the emerald ash borer (Coleoptera: Buprestidae). Biological Control 65, 118123.CrossRefGoogle Scholar
Zimmermann, H, Bloem, S and Klein, H (2004) Biology, history, threat, surveillance and control of the cactus Moth, Cactoblastis cactorum. Austria: Food and Agriculture Organization of the United Nations (FAO).Google Scholar