Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-30T05:14:23.365Z Has data issue: false hasContentIssue false

Morphological and chemical plant traits associated with feeding non-preference to adult of Diabrotica speciosa (Coleoptera: Chrysomelidae) in soybean genotypes

Published online by Cambridge University Press:  05 May 2022

Arlindo Leal Boiça Júnior
Affiliation:
Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Departamento de Ciências da Produção Agrícola, Universidade Estadual Paulista, 14884-900, Jaboticabal, SP, Brazil
Eduardo Neves Costa*
Affiliation:
Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Departamento de Ciências da Produção Agrícola, Universidade Estadual Paulista, 14884-900, Jaboticabal, SP, Brazil Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, 79804-970, Dourados, MS, Brazil
Bruno Henrique Sardinha de Souza
Affiliation:
Departamento de Entomologia, Universidade Federal de Lavras, 37200-000, Lavras, MG, Brazil
Moacir Rossi Forim
Affiliation:
Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
Bruno Perlatti
Affiliation:
Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
Mara Cristina Pessôa da Cruz
Affiliation:
Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Departamento de Ciências da Produção Agrícola, Universidade Estadual Paulista, 14884-900, Jaboticabal, SP, Brazil
*
Author for correspondence: Eduardo Neves Costa, Email: costa_ne@yahoo.com.br

Abstract

Diabrotica speciosa is an important pest of several crops in South America, including soybeans. Adults cause severe defoliation in soybean plants, and damage is significant when cotyledons are attacked. This study evaluated feeding non-preference to D. speciosa adults using 10 soybean genotypes, testing (i) 15-day-old whole plants and (ii) leaf disks of 60-day-old plants, through assessments of soybean attractiveness and leaf area consumed (LAC). Foliar contents of flavonoids and nutrients, and leaf trichome density were quantified for potential correlations with soybean resistance to adult of D. speciosa. In the whole young-plant experiment, under free-choice conditions, the lowest LAC was observed in IAC 100 and PI 227687. In no-choice, PI 227687 and IGRA RA 626 RR showed lower LAC than the other genotypes. In the leaf disk test, in free-choice, the genotypes IAC 100, PI 274454, PI 227687, DM 339, and BR 16 were the least preferred by adult of D. speciosa. In no-choice, PI 274454 was one of the least preferred, similarly to IGRA RA 626 RR, Dowling, and PI 227687. In the whole plant experiment, a high rutin content and low amounts of zinc, calcium, sulfur and manganese were associated with less consumption of D. speciosa on leaves of resistant genotypes. In contrast, in the leaf disk test there was a significant influence of trichomes in soybean resistance to the pest. In conclusion, the PI lines herein assessed are also promising sources for developing cultivars resistant to D. speciosa.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, AA and Karban, R (1999) Why induced defenses may be favored over constitutive strategies in plants. In Tollrian, R and Harvandll, CD (eds), The Ecology and Evolution of Inducible Defenses. Princeton, New Jersey: Princeton University Press, pp. 4561.CrossRefGoogle Scholar
Agrofit (2022) Sistema de agrotóxicos fitossanitários. Ministério da Agricultura, Pecuária e Abastecimento.Google Scholar
Arruda-Gatti, IC and Ventura, MU (2003) Iscas contendo cucurbitacinas para o manejo de Diabrotica spp. Semina: Ciências Agrárias 24, 331336.Google Scholar
Ávila, CJ, Bitencourt, DR and Silva, IF (2019) Biology, reproductive capacity, and foliar consumption of Diabrotica speciosa (Germar) (Coleoptera: Chrysomelidae) in different host plants. Journal of Agricultural Science 11, 353361.CrossRefGoogle Scholar
Ávila, CJ, Tabai, ACP and Parra, JR (2000) Comparação de técnicas para criação de Diabrotica speciosa (Germar) (Coleoptera: Chrysomelidae) em dietas natural e artificial. Anais da Sociedade Entomológica do Brasil 29, 257267.CrossRefGoogle Scholar
Bastos, CS (1998) Sistemas de adubação em cultivos de milho exclusivo e consorciado com feijão, afetando a produção, estado nutricional e incidência de insetos fitófagos e inimigos naturais (Dissertation). Universidade Federal de Viçosa.Google Scholar
Cabrera Walsh, G (2003) Host range and reproductive traits of Diabrotica speciosa (Germar) and Diabrotica viridula (F.) (Coleoptera: Chrysomelidae), two species of South American pest rootworms, with notes on other species of Diabroticina. Environmental Entomology 32, 276285.CrossRefGoogle Scholar
Cabrera Walsh, G and Cabrera, N (2004) Distribution and hosts of the pestiferous and other common diabroticites from Argentina and Southern South America: a geographic and systematic view. In Jolivet, PH, Santiago-Blay, JA and Schmitt, M (eds), New Contributions to the Biology of Chrysomelidae. The Hague, NLD: SPB Academic Publishers, pp. 333350.Google Scholar
Capozzi, F, Casadei, F and Luchinat, C (2006) EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. Journal of Biological Inorganic Chemistry 11, 949962.CrossRefGoogle ScholarPubMed
Centurion, JF, Andrioli, I, Marques Júnior, J and Marcgiori, DG (1995) Características de latossolos roxos desenvolvidos de rochas alcalinas e básicas de Jaboticabal, SP. Scientia Agricola 52, 226232.CrossRefGoogle Scholar
Clark, EW (1958) A review of literature on calcium and magnesium in insects. Annals of the Entomological Society of America 51, 142154.CrossRefGoogle Scholar
Costa, EN, Souza, BHS, Barbosa, JC and Boiça Júnior, AL (2014 a) Antibiosis resistance of soybean genotypes to Diabrotica speciosa (Germar, 1824) (Coleoptera: Chrysomelidae). African Journal of Agricultural Research 9, 11301134.Google Scholar
Costa, EN, Ribeiro, ZA, Souza, BHS and Boiça Júnior, AL (2014b) Oviposition preference assessment of Diabrotica speciosa (Coleoptera: Chrysomelidae) for different soybean genotypes. International Journal of Pest Management 60, 5258.CrossRefGoogle Scholar
Cribb, BW, Stewart, A, Huang, H, Truss, R, Noller, B, Rasch, R and Zalucki, MP (2008) Insect mandibles: comparative mechanical properties and links with metal incorporation. Naturwissenschaften 95, 1723.CrossRefGoogle ScholarPubMed
Dalin, P, Ågren, J, Björkman, C, Huttunen, P and Kärkkäinen, K (2008) Leaf trichome formation and plant resistance to herbivory. In Schaller, A (ed.), Induced Plant Resistance to Herbivory. Dordrecht, NLD: Springer, pp. 89105.CrossRefGoogle Scholar
Diener, S, Zurbrügg, C and Tockner, K (2015) Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. Journal of Insects as Food and Feed 1, 261270.CrossRefGoogle Scholar
Elden, TC and Kenworthy, WJ (1994) Foliar nutrient concentrations of insect susceptible and resistant soybean germplasm. Crop Science 34, 695699.CrossRefGoogle Scholar
Gassen, DN (1984) Insetos associados à cultura do trigo no Brasil. Passo Fundo: Embrapa.Google Scholar
Hanson, A, Bhusal, SJ, Lorenz, A and Koch, R (2019) Aphid-Resistant Soybean Varieties for Minnesota. St. Paul: University of Minnesota Extension.Google Scholar
Hoffmann-Campo, CB, Harborne, JB and McCaffery, AR (2001) Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomologia Experimentalis et Applicata 98, 181194.CrossRefGoogle Scholar
Hoffmann-Campo, CB, Ramos Neto, JA, Oliveira, MCND and Oliveira, LJ (2006) Detrimental effect of rutin on Anticarsia gemmatalis. Pesquisa Agropecuária Brasileira 41, 14531459.CrossRefGoogle Scholar
Ito, H (1967) Nutrition of the silkworm, Bombyx mori L. Proceedings of the Japan Academy 43, 5761.CrossRefGoogle Scholar
Katzel, R and Moller, K (1993) The influence of SO2 stressed host plants on the development of Bupalus piniarius L. (Lepidoptera: Geometridae) and Dendrolimus pini L. (Lepidoptera: Lasiocampidae). Journal of Applied Entomology 116, 5061.CrossRefGoogle Scholar
Klejdus, B, Vacek, J, Benesová, L, Kopecký, J, Lapcík, O and Kubán, V (2007) Rapid-resolution HPLC with spectrometry detection for the determination and identification of isoflavones in soy preparations and plant extracts. Analytical and Bioanalytical Chemistry 389, 22772285.CrossRefGoogle ScholarPubMed
Laine, A, Itamies, J, Orell, M and Kvist, S (1994) Invertebrate fauna of Norway (Picea abies) saplings and its connection with the nitrogen, sulfur and phenolics concentration of the needles. Entomologica Fennica 5, 177185.CrossRefGoogle Scholar
Lara, FM, Elias, JM, Baldin, ELL and Barbosa, JC (1999) Preferência alimentar de Diabrotica speciosa (Germ.) e Cerotoma sp. por genótipos de soja. Scientia Agricola 56, 947951.CrossRefGoogle Scholar
Lima, ACS and Lara, FM (2004) Resistência de genótipos de soja à mosca branca Bemisia tabaci (Genn.) biótipo B (Hemiptera: Aleyrodidae). Neotropical Entomology 33, 7175.CrossRefGoogle Scholar
Link, D and Costa, EC (1978) Danos causados por crisomelídeos em soja. Revista do Centro de Ciências Rurais 8, 245250.Google Scholar
Martins, DC, Baldin, ELL and Marques, MASGM (2004) Atração e consumo de Diabrotica speciosa Germ. (Coleoptera: Chrysomelidae) por genótipos de feijoeiro. Arquivos do Instituto Biológico 71, 4149.Google Scholar
Medina, LM, Trecha, CO and Rosa, APSA (2013) Bioecologia de Diabrotica speciosa (Germar, 1824) (Coleoptera: Chrysomelidae) visando fornecer subsídios para estudos de criação em dieta artificial. Pelotas: Embrapa Clima Temperado.Google Scholar
Miranda, MAC, Braga, NR, Lourenção, AL, Miranda, FTS, Unêda, SH and Ito, MF (2003) Descrição, produtividade e estabilidade da cultivar de soja IAC-24, resistente a insetos. Bragantia 62, 2937.CrossRefGoogle Scholar
Miyazawa, M, Pavan, MA, Muraoka, T, Carmo, CAFS and Mello, WJ (1999) Análises químicas de tecido vegetal. In Silva, FC (ed.), Manual de análises químicas de solos, plantas e fertilizantes. Brasília, Brazil: Embrapa-SPI, pp. 171223.Google Scholar
National Library of Medicine (2022) Zinc in Diet. Maryland: MedlinePlus.Google Scholar
Ootani, MA, Souza, CR, Rodrigues, DM, Silva, JC, Melo, AV and Aguiar, RWS (2014) Resistência à herbivoria contra Cerotoma arcuatus Olivier, 1791 (Coleoptera: Chrysomelidae) em genótipos de soja. Bioscience Journal 30, 164172.Google Scholar
Painter, RH (1951) Insect Resistance in Crop Plants. Lawrence: University of Kansas Press.CrossRefGoogle Scholar
Piubelli, GC, Hoffmann-Campo, CB, Arruda, IC, Franchini, JC and Lara, FM (2003) Flavonoid increase in soybean as a response to Nezara viridula injury and its effect on insect-feeding preference. Journal of Chemical Ecology 29, 12231233.CrossRefGoogle ScholarPubMed
Piubelli, GC, Hoffmann-Campo, CB, Moscardi, F, Miyakubo, SH and Oliveira, MCN (2005) Are chemical compounds important for soybean resistance to Anticarsia gemmatalis? Journal of Chemical Ecology 31, 15091525.CrossRefGoogle ScholarPubMed
Poschenrieder, C, Tolrà, R and Barceló, J (2006) Can metals defend plants against biotic stress? Trends in Plant Science 11, 288295.CrossRefGoogle ScholarPubMed
Rausher, MD (1992) Natural selection and the evolution of plant-insect interactions. In Roitberg, BD and Isman, MB (eds), Insect Chemical Ecology: An Evolutionary Approach. New York, USA: Chapman and Hall, pp. 2088.Google Scholar
Schofield, RMS, Nesson, MH and Richardson, KA (2002) Tooth hardness increases with zinc-content in mandibles of young adult leaf-cutter ants. Naturwissenschaften 89, 579583.CrossRefGoogle ScholarPubMed
Silva, FAS and Azevedo, CAVA (2006) New Version of the Assistat-Statistical Assistance Software. Orlando: American Society of Agricultural and Biological Engineers.Google Scholar
Silva, TRFB, Almeida, ACDS, Moura, TDL, Silva, ARD, Freitas, SDS and Jesus, FG (2016) Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Scientiarum. Agronomy 38, 165170.CrossRefGoogle Scholar
Smith, CM (2005) Plant Resistance to Arthropods: Molecular and Conventional Approaches. Dordrecht: Springer.CrossRefGoogle Scholar
Sosa-Gómez, DR, Moscardi, F, Corrêa-Ferreira, BS, Oliveira, LJ, Hoffmann-Campo, CB, Panizzi, AR, Corso, IC, Bueno, AF, Hirose, E, Gazzoni, DL and Oliveira, EB (2010) Soja: Manejo Integrado de Pragas. Curitiba: Senar.Google Scholar
Stamp, NE (1994) Interactive effects of rutin and constant versus alternating temperatures on performance of Manduca sexta caterpillars. Entomologia Experimentalis et Applicata 72, 125133.CrossRefGoogle Scholar
Statsoft Incorporation (2004) (data analysis software system), version 7. Tulsa, OK, USA: Statsoft Incorporation.Google Scholar
Taiz, L, Zeiger, E, Møller, IM and Murphy, A (2017) Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed Editora.Google Scholar
Treutter, D (2006) Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters 4, 147157.CrossRefGoogle Scholar
Veiga, RFA, Rossetto, CJ, Razera, LF, Gallo, PB, Bertoletto, N, Medina, PF, Tisselli Filho, O and Cione, J (1999) Caracterização morfológica e agronômica do cultivar de soja ‘IAC-100’. Campinas: Instituto Agronômico.Google Scholar
Viana, PA (2010) Manejo de Diabrotica speciosa na cultura do milho. Sete Lagoas, MG: Embrapa Milho e Sorgo.Google Scholar
Wasserman, RH and Fullmer, CS (1989) On the molecular mechanism of intestinal calcium transport. Advances in Experimental Medicine and Biology 249, 4565.CrossRefGoogle ScholarPubMed
Supplementary material: File

Boiça Júnior et al. supplementary material

Table S1

Download Boiça Júnior et al. supplementary material(File)
File 16.8 KB
Supplementary material: File

Boiça Júnior et al. supplementary material

Table S2

Download Boiça Júnior et al. supplementary material(File)
File 16.6 KB