Skip to main content
×
×
Home

ARITHMETIC PROPERTIES OF INFINITE PRODUCTS OF CYCLOTOMIC POLYNOMIALS

  • PETER BUNDSCHUH (a1) and KEIJO VÄÄNÄNEN (a2)
Abstract

We study transcendence properties of certain infinite products of cyclotomic polynomials. In particular, we determine all cases in which the product is hypertranscendental. We then use various results from Mahler’s transcendence method to obtain algebraic independence results on such functions and their values.

Copyright
Corresponding author
pb@math.uni-koeln.de
References
Hide All
[1]Amou, M., ‘Algebraic independence of the values of certain functions at a transcendental number’, Acta Arith. 59 (1991), 7182.
[2]Bacher, R., ‘Twisting the Stern sequence’, Preprint, 2010, available at arXiv:1005.5627.
[3]Bugeaud, Y., Han, G.-N., Wen, Z.-Y. and Yao, J.-Y., ‘Hankel determinants, Padé approximations, and irrationality exponents’, Preprint, 2015, available at arXiv:1503.02797.
[4]Bundschuh, P., ‘Algebraic independence of infinite products and their derivatives’, in: Number Theory and Related Fields, Springer Proceedings in Mathematics and Statistics, 43 (eds. Borwein, J. M. et al. ) (Springer, New York, 2013), 143156.
[5]Bundschuh, P. and Väänänen, K., ‘Algebraic independence of the generating functions of Stern’s sequence and of its twist’, J. Théor. Nombres Bordeaux 25 (2013), 4357.
[6]Carlson, F., ‘Über Potenzreihen mit ganzzahligen Koeffizienten’, Math. Z. 9 (1921), 113.
[7]Corvaja, P. and Zannier, U., ‘Some new applications of the subspace theorem’, Compositio Math. 131 (2002), 319340.
[8]Dreyfus, T., Hardouin, C. and Roques, J., ‘Hypertranscendence of solutions of Mahler equations’, Preprint, 2015, available at arXiv:1507.03361.
[9]Duke, W. and Nguyen, H. N., ‘Infinite products of cyclotomic polynomials’, Bull. Aust. Math. Soc. 91 (2015), 400411.
[10]Fatou, P., ‘Séries trigonométriques et séries de Taylor’, Acta Math. 30 (1906), 335400.
[11]Kubota, K. K., ‘On the algebraic independence of holomorphic solutions of certain functional equations and their values’, Math. Ann. 227 (1977), 950.
[12]Nishioka, K., Mahler Functions and Transcendence, Lecture Notes in Mathematics, 1631 (Springer, Berlin, 1996).
[13]Philippon, P., ‘Indépendance algébrique et K-fonctions’, J. reine angew. Math. 497 (1998), 115.
[14]Pólya, G. and Szegő, G., Aufgaben und Lehrsätze aus der Analysis II, Heidelberger Taschenbücher, 74 (Springer, Berlin, 1971).
[15]Väänänen, K., ‘Algebraic independence of certain Mahler numbers’, Preprint, 2015, available at arXiv:1507.02510.
[16]Waldschmidt, M., Diophantine Approximation on Linear Algebraic Groups, Grundlehren der Mathematischen Wissenschaften, 326 (Springer, Berlin, 2000).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed