Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-04T21:06:08.287Z Has data issue: false hasContentIssue false

An evaluation of methods for sampling ants (Hymenoptera: Formicidae) in British Columbia, Canada

Published online by Cambridge University Press:  11 May 2012

R.J. Higgins*
Affiliation:
Department of Biological Sciences, Thompson Rivers University, 1250 Western Avenue, Williams Lake, British Columbia, V2G 1H7 Canada
B.S. Lindgren
Affiliation:
Natural Resources and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9 Canada
*
1Corresponding author (e-mail: rhiggins@tru.ca).

Abstract

Ants (Hymenoptera: Formicidae) are ubiquitous and of considerable ecological interest, yet poorly studied in Canada. Given their natural history attributes and relatively low density and diversity in cool boreal forests, there is a need to evaluate the applicability of commonly used approaches to sampling and analysis. We examined the relative utility of two pitfall trap designs, mini-Winkler litter extractions, and colony versus forager sampling for ecological studies. First, we found that Laurent (conventional) and Nordlander (modified to exclude larger nontarget organisms) pitfall traps were equally efficacious for estimating total species richness. Second, pitfall trapping yielded marginally higher total species richness than mini-Winkler litter sampling, by the incidence-based estimator (Chao2). Third, two studies considering the relationship between captures of individual ants in pitfall traps and identified ant colonies argued for caution in how pitfall captures are interpreted. In the first study, Nordlander traps placed in a grid surrounding nests of Formica obscuripes Forel revealed unique and highly patchy captures of individuals, with no patterns relating to proximity to the nest. In the second study, abundance estimates to compare ant assemblage structure in a simple grassland ecosystem by pitfall trapping (relative) and area-based hand sampling (absolute) for colonies, revealed that relative sampling does not reflect the absolute ant assemblage structure. Our results support, equivocally, the use of pitfall traps (Nordlander) over mini-Winklers in the cool moist forests of west-central British Columbia, but individual specimen counts should not be used when analysing the data.

Résumé

Les fourmis (Hymenoptera: Formicidae) sont ubiquistes et elles présentent un intérêt écologique considérable, mais elles demeurent peu étudiées au Canada. À cause des caractéristiques de leur histoire naturelle et de leur densité et diversité relativement basses dans les forêts boréales fraîches, il est nécessaire d’évaluer l'applicabilité des méthodologies d’échantillonnage et d'analyse couramment en usage. Nous examinons l'utilité relative de deux modèles de pièges à fosse, de mini-extracteurs de litière de type Winkler et de l’échantillonnage des colonies plutôt que des individus en recherche de nourriture dans les études écologiques. D'abord, nous trouvons que les pièges à fosse de Laurent (modèle courant) et de Nordlander (modifiés pour exclure les organismes plus grands non ciblés) sont tout aussi efficaces pour estimer la richesse spécifique totale. De plus, les pièges à fosse indiquent une richesse spécifique légèrement plus élevée que les mini-échantillonneurs de litière Winkler, au moyen de l'estimateur basé sur l'incidence (Chao2). Troisièmement, deux études qui examinent la relation entre les captures de fourmis individuelles dans les pièges à fosse et les colonies de fourmis identifiées soulignent la nécessité de prudence dans l'interprétation des captures dans les pièges à fosse. Dans la première étude, des pièges de Nordlander placés sur une grille entourant des nids de Formica obscuripes Forel produisent des captures uniques et fortement contagieuses d'individus, mais sans patron associé à la proximité du nid. Dans la seconde étude, les estimations d'abondance pour comparer la structure des peuplements de fourmis dans un écosystème simple de prairie avec des pièges à fosse (relatives) et par récolte manuelle des colonies par surface (absolues) montrent que l’échantillonnage relatif ne reflète pas la structure du peuplement absolu de fourmis. Nos résultats appuient, de manière équivoque, l'utilisation des pièges à fosse (Nordlander) plutôt que des mini-appareils Winkler dans les forêts fraîches et humides du centre ouest de la Colombie-Britannique, mais on ne devrait pas faire de décomptes des spécimens individuels dans l'analyse des données.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosti, D., Majer, J.D., Alonso, L., Schultz, T.R. (editors). 2000. Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, United States of America.Google Scholar
Anderson, A.N. 1997. Functional groups and patterns of organization in North American ant communities: a comparison to Australia. Journal of Biogeography, 24: 433460.CrossRefGoogle Scholar
Andersen, A.N., Hoffman, B.D., Muller, W.J., Griffiths, A.D. 2002. Using ants as bioindicators in land management: simplifying assessment of ant community responses. Journal of Applied Ecology, 39: 817.CrossRefGoogle Scholar
Avantor. 2008. Propylene glycol. Material safety data sheet [online]. Available from http://www.avantormaterials.com/documents/MSDS/usa/English/P6928_msds_us_Default.pdf [accessed 6 October 2011].Google Scholar
Barber, H.S. 1931. Traps of cave-inhabiting insects. Journal of Elisha-Mitchell Scientological Society, 46: 259266.Google Scholar
Bestelmeyer, B.L. 2000. A multi-scale perspective on ant diversity in semiarid landscapes. Ph.D. dissertation. Colorado State University, Fort Collins, United States of America.Google Scholar
Bestelmeyer, B.T., Agosti, D., Alonso, L., Brandao, C.R.F., Brown, W.L., Delabie, J., Silvestre, R. 2000. Field techniques for the study of ground-dwelling ants. In Ants: standard methods for measuring and monitoring biodiversity. Edited by D. Agosti, J.D. Majer, L. Alonso and T.R. Schultz. Smithsonian Institution Press, Washington, United States of America.Google Scholar
Bolton, B., Alpert, G., Ward, P.S., Naskrecki, P. 2006. Bolton's catalogue of the ants of the world. CD-ROM. Harvard University Press, Cambridge, Massachusetts, United States of America.Google Scholar
Borgelt, A.New, T.R. 2005. Pitfall trapping for ants (Hymenoptera, Formicidae) in mesic Australia: the influence of trap diameter. Journal of Insect Conservation, 9: 219221.CrossRefGoogle Scholar
CCAC. 2007. Guidelines on: the procurement of animals used in science [online]. Canadian Council on Animal Care. Available from http://www.ccac.ca/Documents/Standards/Guidelines/Procurement.pdf [accessed 14 June 2011].Google Scholar
Colwell, R.K. 2006. EstimateS: statistical estimation of species richness and shared species from samples, Version 8 [online]. Available from purl.oclc.org/estimates [accessed 20 May 2011].Google Scholar
Dunn, R.R., Parker, C.R., Sanders, N.J. 2007. Temporal patterns of diversity: assessing the biotic and abiotic controls on ant assemblages. Biological Journal of the Linnean Society, 91: 191201.CrossRefGoogle Scholar
Fisher, B.L. 1999. Improving inventory efficency: a case study of leaf-litter ant diversity in Madagascar. Ecological Applications, 9: 714731.CrossRefGoogle Scholar
Francoeur, A. 1973. Revision taxonomique des espèces néarctiques du group fusca, genre Formica (Formicidae: Hymenoptera). Mémoires de la Societé Entomologique du Quebec, 3: 1316.Google Scholar
Greenslade, P.Greenslade, P.J.M. 1971. The use of baits and preservatives in pitfall traps. Journal of the Australian Entomological Society, 10: 253260.CrossRefGoogle Scholar
Hamburg, H.V., Andersen, A.N., Meyer, W.J., Robertson, H.G. 2004. Ant community development on rehabilitated ash dams in the South African highveld. Restoration Ecology, 12: 552558.CrossRefGoogle Scholar
Hancock, M.H.Legg, C.J. 2011. Pitfall trapping bias and arthropod body mass [online]. Insect Conservation and Diversity. doi:10.1111/j.1752-4598.2011.00162.x.CrossRefGoogle Scholar
Hansen, L.D.Klotz, J.H. 2005. Carpenter ants of the United States and Canada. Comstock Publishing Associates, Ithaca, New York, United States of America.CrossRefGoogle Scholar
Higgins, R.J. 2010. The ant (Hymenoptera: Formicidae) communities of the central interior of British Columbia: adaptations to a temperature-constrained environment. Ph.D. dissertation. University of Northern British Columbia, British Columbia, Canada.Google Scholar
Higgins, R.J.Lindgren, B.S. 2006. The fine scale physical attributes of coarse woody debris and effects of surrounding stand structure on its utilization by ants (Hymenoptera: Formicidae) in British Columbia, Canada. In Insect biodiversity and dead wood: proceedings of a symposium for the 22nd International Congress of Entomology. Edited by S.J. Grove and J.L. Hanula. 2004. United States Department of Agriculture Forest Service, Southern Research Station, Asheville, North Carolina, United States of America. pp. 67–74.Google Scholar
Hölldobler, B.Wilson, E.O. 1990. The ants. The Belknap Press of Harvard University Press, Cambridge, Massachusetts, United States of America.CrossRefGoogle Scholar
Hölldobler, B.Wilson, E.O. 2009. The superorganism: the beauty, elegance, and strangeness of insect societies. W.W. Norton & Company, New York.Google Scholar
Ivanov, K.Keiper, J. 2009. Effectiveness and biases of Winkler extraction and pitfall trapping for collecting ground-dwelling ants in northern temperate forests. Environmental Entomology, 38: 17241736.CrossRefGoogle ScholarPubMed
Kaspari, M.Weiser, M.D. 1999. The size-grain hypothesis and interspecific scaling in ants. Functional Ecology, 13: 530538.CrossRefGoogle Scholar
King, J.R.Porter, S.D. 2005. Evaluation of sampling methods and species richness estimators for ants in upland ecosystems in Florida. Environmental Entomology, 34: 15661578.CrossRefGoogle Scholar
Lang, A. 2000. The pitfalls of pitfalls: a comparison of pitfall trap catches and absolute density estimates of epigeal invertebrate predators in arable land. Journal of Pest Science, 73: 99106.CrossRefGoogle Scholar
Laurent, P. 1917. Collecting insects by the aid of molasses traps. Entomological News, 28: 8182.Google Scholar
Lemieux, J.P.Lindgren, B.S. 1999. A pitfall trap for large-scale trapping of Carabidae: comparison against conventional design, using two different preservatives. Pedobiologia, 43: 245253.CrossRefGoogle Scholar
Lindsey, P.A.Skinner, J.D. 2001. Ant composition and activity patterns as determined by pitfall trapping and other methods in three habitats in the semi-arid Karoo. Journal of Arid Environments, 48: 551568.CrossRefGoogle Scholar
Mao, C.X., Colwell, R.K., Chang, J. 2005. Estimating the species accumulation curve using mixtures. Biometrics, 61: 433441.Google ScholarPubMed
Martelli, M.G., Ward, M.M., Fraser, A.M. 2004. Ant diversity sampling on the southern Cumberland plateau: a comparison of litter sifting and pitfall trapping. Southeastern Naturalist, 3: 113126.CrossRefGoogle Scholar
McColl, D.A. 2010. Factors affecting carabid (Coleoptera: Carabidae) assemblages in successional sub boreal spruce forests, with special reference to their interaction with ants (Hymenoptera: Formicidae). M.Sc. thesis. University of Northern British Columbia, British Columbia, Canada.Google Scholar
McIver, J.D.Yandell, K. 1998. Honeydew harvest in the western thatching ant. American Entomologist, 44: 3035.CrossRefGoogle Scholar
McIver, J.D., Torgersen, T.R., Cimon, N.J. 1997. A supercolony of the thatch ant Formica obscuripes from the blue mountains of Oregon. Northwest Science, 71: 1829.Google Scholar
Meidinger, D.V.Pojar, J. (editors). 1991. Ecosystems of British Columbia. Special Report Series Number 6. British Columbia Ministry of Forests, Victoria, British Columbia, Canada.Google Scholar
Naumann, K., Preston, W.B., Ayre, G.L. 1999. An annotated checklist of the ants (Hymenoptera: Formicidae) of British Columbia. Journal of the Entomological Society of British Columbia, 96: 2968.Google Scholar
Nordlander, G. 1987. A method for trapping Hylobius abietis (L.) with a standardized bait and its potential for forecasting seeding damage. Scandinavian Journal of Forest Research, 2: 199213.CrossRefGoogle Scholar
Olson, D.M. 1991. A comparison of the efficacy of litter sifting and pitfall traps for sampling leaf litter ants (Hymenoptera, Formicidae) in a tropical wet forest, Costa Rica. Biotropica, 23: 166172.CrossRefGoogle Scholar
Osborn, F., Goitia, W., Cabrera, M., Jaffé, K. 1999. Ants, plants, and butterflies as diversity indicators: comparisons between strata at six forest sites in Venezuela. Studies of Neotropical Fauna and Environment, 34: 5964.CrossRefGoogle Scholar
Parr, C.L.Chown, S.L. 2001. Inventory and bioindicator sampling: testing pitfall and Winkler methods with ants in a South African savanna. Journal of Insect Conservation, 5: 2736.CrossRefGoogle Scholar
Pearce, J.L., Schuurman, D., Barber, K.N., Larrivee, M., Venier, L.A., McKee, J., et al. 2005. Pitfall trap designs to maximize invertebrate captures and minimize captures of nontarget vertebrates. The Canadian Entomologist, 137: 233250.CrossRefGoogle Scholar
Phillips, I.D.Cobb, T.P. 2005. Effects of habitat structure and lid transparency on pitfall catches. Environmental Entomology, 34: 875882.CrossRefGoogle Scholar
Romero, H.Jaffe, K. 1989. A comparison of methods for sampling ants in savannas. Biotropica, 21: 348352.CrossRefGoogle Scholar
Sanders, C.J. 1972. Seasonal and daily activity patterns of carpenter ants in northwestern Ontario. The Canadian Entomologist, 104: 16811687.CrossRefGoogle Scholar
Savolainen, R.Vepsäläinen, K. 1989. Niche differentiation of ant species within territories of the wood ant Formica polyctena. Oikos, 56: 316.CrossRefGoogle Scholar
Schlick-Steiner, B.C., Steiner, F.M., Moder, K., Bruckner, A., Fiedler, K., Christian, E. 2006. Assessing ant assemblages: pitfall trapping versus nest counting (Hymenoptera: Formicidae). Insectes Sociaux, 53: 274281.CrossRefGoogle Scholar
Schowalter, T.D., Zhang, Y.L., Rykken, J.J. 2003. Litter invertebrate responses to variable density thinning in western Washington forest. Ecological Applications, 13: 12041211.CrossRefGoogle Scholar
Soberón, J.Llorente, J. 1993. The use of species accumulation functions for the prediction of species richness. Conservation Biology, 7: 480488.CrossRefGoogle Scholar
Southwood, T.R.E.Henderson, P.A. 2000. Ecological methods, 3rd ed. Blackwell Science Ltd., Oxford, Oxfordshire, United Kingdom.Google Scholar
Tista, M.Fieldler, K. 2011. How to evaluate and reduce sampling effort for ants. Journal of Insect Conservation, 15: 547559.CrossRefGoogle Scholar
Vanderwoude, C., Andersen, N.A., House, A.P.N. 1997. Ant-communities as bio-indicators in relation to fire management of spotted gum (Eucalyptus: Maculata) forests in south-east Queensland. Memoirs of the Museum of Victoria, 56: 671675.CrossRefGoogle Scholar
Vogt, J.T.Harsh, D.K. 2003. A simple device to assist with pitfall trap sampling. Florida Entomologist, 26: 9495.CrossRefGoogle Scholar
Walthur, B.A.Martin, J.-L. 2001. Species richness estimation of bird communities: how to control for sampling effort? Ibis, 143: 413419.CrossRefGoogle Scholar
Wang, C., Strazanac, J., Butler, L. 2001a. Association between ants (Hymenoptera: Formicidae) and habitat characteristics in oak-dominated mixed forests. Environmental Entomology, 30: 842848.CrossRefGoogle Scholar
Wang, C., Strazanac, J., Butler, L. 2001b. A comparison of pitfall traps with bait traps for studying leaf litter ant communities. Journal of Economic Entomology, 94: 761765.CrossRefGoogle ScholarPubMed
Wheeler, G.C.Wheeler, J. 1963. The ants of North Dakota. The University of North Dakota Press, Grand Forks, North Dakota, United States of America.Google Scholar
Wheeler, G.C.Wheeler, J. 1986. The ants of Nevada. Natural History Museum of Los Angeles County, Los Angeles, California, United States of America.Google Scholar
Woodcock, B.A. 2005. Pitfall trapping in ecological studies. In Insect sampling in forest ecosystems Edited by S.R. Leather, J.H. Lawton and G.E. Likens. Blackwell Scientific Ltd., Malden, Massachusetts, United States of America.Google Scholar
Work, T.T., Buddle, C.M., Korinus, M. 2002. Pitfall trap size and capture of three taxa of litter-dwelling arthropods: implications for biodiversity studies. Environmental Entomology, 31: 438448.CrossRefGoogle Scholar