Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-26T22:38:37.045Z Has data issue: false hasContentIssue false


Published online by Cambridge University Press:  31 May 2012

O.N. Morris
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9


Water suspensions of the entomogenous nematode, Steinernema feltiae Filipjev (“All” strain), were applied to the soil of caged microplot stands of canola, Brassica napus L. cv. Tower, colonized by overwintering adults of the crucifer flea beetle, Phyllotreta cruciferae (Goeze), at the rate of about 1 × 106 infective juveniles per 0.8 m2 soil surface. Single treatments, which were applied before and after the colonization, did not affect the flea beetle adults or their progeny as evidenced by the number of new generation adults that subsequently emerged from the soil. Bioassays with wax moth larvae, Galleria melonella (Linn.), showed that the infectivity of nematodes in the soil declined sharply within 6 days of treatment. High concentrations of the herbicide Treflan®, with which the soil was treated, did not affect the infectivity of the nematodes. Under the conditions of the test, S. feltiae appeared to have no potential as a biological control agent for the crucifer flea beetle.


Des suspensions aqueuses du nématode entomopathogène Steinernema feltiae Filipjev (multisouches) ont été appliquées au sol de microparcelles grilladées de colza canola, Brassica napus L. cv. Tower, colonisées par les adultes hivernants de l’altise des crucifères Phyllotreta cruciferae (Goeze). Les suspensions étaient utilisées à raison d’environ 1 × 106 juveniles infectieux par 0,8 m2 de surface de terre. Un traitement unique appliqué avant et après la colonisation s’est révélé sans effet sur les altises adultes et sur leur descendance si l’on en juge d’après le nombre d’adultes de nouvelle génération sortis par après. Des dosages biologiques effectués sur la fausse-teigne de la cire Galleria melonella (L.) ont fait voir une chute brutale de l’infectivité du nématode dans le sol dans les 6 jours suivant le traitement. Des doses élevées de l’herbicide Treflan® n’ont pas eu d’effet sur l’infectivité du nématode. Dans les conditions d’exécution de l’essai, S. feltiae ne semble pas offrir de possibilités comme agent de lutte biologique contre l’altise des crucifères.

Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Anonymous. 1974. Annual project statement. Comm. Inst. Biol. Control, Delemont, Switzerland.Google Scholar
Anonymous. 1977. Progress report No. 2. Comm. Inst. Biol. Control (April–June 1977), Delemont, Switzerland.Google Scholar
Bracken, G.K., and Bucher, G.E.. 1977. An estimate of the relation between density of bertha armyworms and yield loss on rapeseed, based on artificial infestations. J. econ. Ent. 70: 701705.CrossRefGoogle Scholar
Bucher, G.E., Lamb, R.J., and Bracken, G.K.. 1981. Temperature profiles in a rape field before and after harvest. Can. J. Soil Sci. 61: 145156.CrossRefGoogle Scholar
Gray, P.A., and Johnson, D.T.. 1983. Survival of the nematode Neoaplectana carpocapsae in relation to soil temperature, moisture and time. J. Georgia ent. Soc. 18: 454460.Google Scholar
Hand, L.F., and Keaster, A.J.. 1967. The environment of an insect field cage. J. econ. Ent. 60: 901915.CrossRefGoogle Scholar
Ishibashi, N., Kondo, E., and Ito, S.. 1983. Effects of application of certain herbicides on soil nematodes and aquatic invertebrates in rice paddy fields in paper. Crop Prot. 2: 289304.CrossRefGoogle Scholar
Kaya, H.K. 1985. Susceptibility of early larval stages of Pseudaletia unipuncta and Spodoptera exigua (Lepidoptera: Noctuidae) to the entomogenous nematode Steinernema feltiae (Rhabditida: Steinernematidae). J. Invertebr. Pathol. 46: 5862.CrossRefGoogle Scholar
Kinoshita, G.B., Svec, H.J., Harris, C.R., and McEwen, F.L.. 1979. Biology of the crucifer flea beetle, Phyllotreta cruciferae (Coleoptera: Chrysomelidae), in southern Ontario. Can. Ent. 111: 13951407.CrossRefGoogle Scholar
Lamb, R.J. 1983. Phenology of flea beetle (Coleoptera: Chrysomelidae) flight in relation to their invasion of canola fields in Manitoba. Can. Ent. 115: 14931502.CrossRefGoogle Scholar
Lamb, R.J. 1984. Effects of flea beetles, Phyllotreta spp. (Chrysomelidae: Coleoptera) on the survival, growth, seed yield, and quality of canola, rape and yellow mustard. Can. Ent. 116: 269280.CrossRefGoogle Scholar
Lamb, R.J., and Gerber, G.H.. 1985. Effects of temperature on the development, growth, and survival of larvae and pupae of a north-temperature chrysomelid beetle. Oecologia (Berlin) 67: 818CrossRefGoogle ScholarPubMed
Lamb, R.J., and Turnock, W.J.. 1982. Economics of insecticidal control of flea beetles (Coleoptera: Chrysomelidae) attacking rape in Canada. Can. Ent. 114: 877–840.CrossRefGoogle Scholar
Molloy, D., Gaugler, R., and Jamback, H.. 1980. The pathogenicity of Neoaplectana carpocapsae to blackfly larvae. J. Invertebr. Pathol. 36: 302306.CrossRefGoogle Scholar
Morris, O.N. 1985. Susceptibility of 31 species of agricultural insect pests to the entomogenous nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Can. Ent. 117: 401407.CrossRefGoogle Scholar
Osgood, C.E. 1975. Damage assessment as part of flea beetle management on rape. ASPL Report. pp. 54–55.Google Scholar
Poinar, G.O. 1979. Nematodes for biological control of insects. CRC Press. 277 pp.Google Scholar
Westdal, P.H., and Romanow, W.. 1972. Observations on the biology of the flea beetle, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Man. Ent. 6: 3545.Google Scholar
Wylie, H.G. 1979. Observations on distribution, seasonal life history, and abundance of flea beetles (Coleoptera: Chrysomelidae) that infest rape crops in Manitoba. Can. Ent. 111: 13451353.CrossRefGoogle Scholar