Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-08T21:16:59.493Z Has data issue: false hasContentIssue false

CHARACTERIZATION OF GYPSY MOTH POPULATIONS AND RELATED SPECIES USING A NUCLEAR DNA MARKER

Published online by Cambridge University Press:  31 May 2012

Tom A. Pfeifer
Affiliation:
Zoology Department, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
Leland M. Humble
Affiliation:
Forestry Canada, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
Mark Ring
Affiliation:
Zoology Department, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
Tom A. Grigliatti*
Affiliation:
Zoology Department, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
*
1Author to whom correspondence should be addressed.

Abstract

The discovery of egg masses of Asian gypsy moth onboard Russian freighters in Pacific ports of North America and the capture of adult male gypsy moths in pheromone traps underscored the need for a positive identification of Asian and European gypsy moth males. We have devised a method for differentiation of these two populations based on restriction endonuclease cleavage of a polymerase chain reaction (PCR) generated product. DNA primers for the 5S and 28S rDNA were employed to amplify the ITS2 region using PCR. The ends of the amplified DNA products were sequenced and gypsy moth specific oligonucleotide primers were designed to amplify the gypsy moth ITS2 region. Eleven of 28 restriction enzymes tested cleaved the amplified product. The restriction enzymes ClaI, PvuI, and TaqI generated distinct restriction fragment patterns for the Asian and European gypsy moth PCR product. This diagnostic was applied to samples of field-collected gypsy moths in a double blind test and correctly identified them as Asian or European. Additional studies demonstrated that these primers and restriction enzymes could be used to differentiate among Lymantria dispar, L. monacha, and L. mathura.

Résumé

La découverte de masses d’oeufs de spongieuses asiatiques à bord de cargos russes dans des ports nord-américains de la côte du Pacifique et la capture de mâles adultes dans des pièges à phéromone ont démontré la nécessité de pouvoir distinguer avec certitude les mâles de la population asiatique de ceux de la population européenne de la Spongieuse. Nous avons mis au point une méthode de différenciation de ces deux populations basée sur le clivage par des endonucléases de restriction d’un fragment obtenu par l’amplification en chaîne par polymérase (PCR). Les amorces d’ADN capables de reconnaître les fragments 5S et 28S d’ADN ribosomique ont été utilisées pour amplifier la région ITS2 par la réaction PCR. Les extrémités des fragments d’ADN amplifiés ont été soumises à un séquençage et des amorces d’oligonucléotides spécifiques aux spongieuses ont été choisies pour amplifier la région ITS2 de spongieuse. Onze des 28 enzymes de restriction essayées ont opéré le clivage du fragment amplifié. Les enzymes de restriction ClaI, PvuI, et TaqI ont donné lieu à des séquences distinctes des fragments obtenus par PCR chez les spongieuses européennes et asiatiques. Ce diagnostic a été confirmé en nature au cours de tests aveugles répétés et il permet d’identifier correctement les spongieuses asiatiques et européennes. Des travaux additionnels ont démontré que ces amorces et enzymes de restriction peuvent également servir à distinguer Lymantria dispar, L. monacha et L. mathura.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baranchikov, Y.N. 1989. Ecological basis of the evolution of host relationships in Eurasian gypsy moth populations. pp. 319338in Proceedings, Lymantriidae: A Comparison of Features of New and Old World Tussock Moths. USDA-Forest Service, Northeastern Forest Experiment Station, Broomall, PA.Google Scholar
Bogdanowicz, S.M., Wallner, W.E., Bell, J., Odell, T.M., and Harrison, R.G.. 1993. Asian gypsy moths (Lepidoptera: Lymantriidae) in North America: Evidence from molecular data. Annals of the Entomological Society of America 86: 710715.CrossRefGoogle Scholar
DeSalle, R. 1992. The phylogenetic relationships of flies in the Family Drosophilidae deduced from mtDNA sequences. Molecular Phylogenetics and Evolution 1(1): 3140.CrossRefGoogle ScholarPubMed
Despres, L., Imbert-Establet, D., Combes, C., and Bonhomme, F.. 1992. Molecular evidence linking hominid evolution to recent radiation in schistosomes (Platyhelminthes: Trematodes). Molecular Phylogenetics and Evolution 1: 295304.CrossRefGoogle Scholar
Forbush, E.H., and Fernald, C.H.. 1896. The Gypsy Moth. Wright and Potter Printing Co., Boston, MA. 595 pp.Google Scholar
Harrison, R.G., and ODell, T.M.. 1989. Mitochondrial DNA as a tracer of gypsy moth origins. pp. 265273in Proceedings, Lymantriidae: A Comparison of Features of New and Old World Tussock Moths. USDA-Forest Service, Northeastern Forest Experiment Station, Broomall, PA.Google Scholar
Harrison, R.G., Rand, D.M., and Wheeler, W.C.. 1987. Mitochondrial DNA variation in field crickets across a narrow hybrid zone. Molecular Biological Evolution 4(2): 144158.Google Scholar
Jakubczak, J.L., Burke, W.D., and Eickbush, T.H.. 1991. Retrotransposable elements R1 and R2 interupt the rRNA genes of most insects. Proceedings of the National Academy of Sciences, USA 88: 32953299.CrossRefGoogle Scholar
Krawczak, M., Reiss, J., Schmidtke, J., and Rosler, U.. 1989. Polymerase chain reaction: Replication errors and reliability of gene diagnosis. Nucleic Acids Research 17(6): 21972201.CrossRefGoogle ScholarPubMed
Michot, B., Qu, L., and Bachellerie, J.. 1990. Evolution of large-subunit rRNA structure. European Journal of Biochemistry 188: 219229.CrossRefGoogle ScholarPubMed
Palumbi, S., Martin, A., Romano, S., McMillan, W.O., Stice, L., and Grabowski, G.. 1991. The Simple Fool's Guide to PCR. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI 96822.Google Scholar
Yao, C., Frederiksen, R.A., and Magill, C.W.. 1992. Length heterogeneity in ITS2 and the methylation status of CCGG and GCGC sites in the rRNA genes of the genus Peronosclerospora. Current Genetics 22: 415420.CrossRefGoogle Scholar