Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T02:21:16.197Z Has data issue: false hasContentIssue false

A COMPARISON OF LABORATORY AND FIELD TESTS OF BACILLUS SPHAERICUS STRAIN 1593 AND BACILLUS THURINGIENSIS VAR. ISRAELENSIS AGAINST AEDES STIMULASS LARVAE (DIPTERA: CULICIDAE)1

Published online by Cambridge University Press:  31 May 2012

Stephen P. Wraight
Affiliation:
Biological Survey, New York State Museum, The State Education Department, Cultural Education Center, Albany, New York 12230
Daniel Molloy
Affiliation:
Biological Survey, New York State Museum, The State Education Department, Cultural Education Center, Albany, New York 12230
Patricia McCoy
Affiliation:
Biological Survey, New York State Museum, The State Education Department, Cultural Education Center, Albany, New York 12230

Abstract

Bacillus thuringiensis var. israelensis (serotype H-14) and B. sphaericus strain 1593 were tested against Aedes stimulons larvae in the laboratory and in 38-cm-diam, open-ended cylinders embedded in the bottom detritus of a woodland pool. Estimates of LC50 were lower against fourth instars in the field at a mean temperature of 15.9 °C than in the laboratory at 21.1 °C. The greater efficacy in the field was attributed to high daytime water temperatures (mean 20.5 °C) following treatment and exposure of the larvae to substantially greater amounts of toxic material in a larger volume of water than in the laboratory. The regression of probit on log10 concentration was not linear over the entire range of mortality caused by B. sphaericus, increasing the difficulty of estimation of LC values. Bacillus sphaericus was significantly less active than B. thuringiensis.

Résumé

Bacillus thuringiensis var. israelensis (sérotype H-14) et B. sphaericus souche 1593 ont été testés contre des larves d'Aedes stimulans au laboratoire et dans des cylindres ouverts de 38 cm de diamètre enfoncés dans les matériaux du fond d'un étang de boisé. Les estimés de la CL50 obtenus contre les larves de stade 4 sur le terrain à une température moyenne de 15.9 °C étaient inférieurs à ceux obtenus en laboratoire à 21.1 °C. L'efficacité plus grande sur le terrain fût attribuée aux températures diurnes de l'eau élevées (moyenne de 20.5 °C) observées après le traitement, et à l'exposition des larves à des quantités substantiellement plus grandes de matériel toxique dans un volume d'eau plus grand qu'au laboratoire. La régression des probits sur le log10 de la concentration n'était pas linéaire sur tout l'écart couvert par la mortalité due à B. sphaericus, rendant ainsi plus difficile l'estimation des valeurs de la CL. B. sphaericus s'est avéré significativement moins actif que B. thuringiensis.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bliss, C.I. 1935. The calculation of the dosage-mortality curve. Ann. appl. Biol. 22: 134167.CrossRefGoogle Scholar
de Barjac, H. and Coz, J.. 1979. Sensibilité comparée de six espèces différentes de moustiques à Bacillus thuringiensis var. israelensis. Bull. Wld Hlth Org. 57: 139141.Google ScholarPubMed
Finney, D.J. 1971. Probit Analysis. 3rd ed.Cambridge Univ. Press, Cambridge.Google Scholar
Goldberg, L.J. and Margalit, J.. 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosquito News 37: 355358.Google Scholar
Hertlein, B.C., Levy, R., and Miller, T.W. Jr., 1979. Recycling potential and selective retrieval of Bacillus sphaericus from soil in a mosquito habitat. J. invert. Path. 33: 217221.CrossRefGoogle Scholar
Luthy, P., Raboud, G., Delucchi, V., and Kuenzi, M.. 1980. Field efficacy of Bacillus thuringiensis var. israelensis. Mitt. schweiz. ent. Ges. 53: 19.Google Scholar
Mulligan, F.S., Schaefer, C.H., and Miura, T.. 1978. Laboratory and field evaluation of Bacillus sphaericus as a mosquito control agent. J. econ. Ent. 71: 774777.CrossRefGoogle Scholar
Pruett, C.J. H., Burges, H.D., and Wyborn, C. H.. 1980. Effect of exposure to soil on potency and spore viability of Bacillus thuringiensis. J. invert. Path. 35: 168174.CrossRefGoogle Scholar
Ramoska, W.A., Singer, S., and Levy, R.. 1977. Bioassay of three strains of Bacillus sphaericus on field-collected mosquito larvae. J. invert. Path. 30: 151154.CrossRefGoogle ScholarPubMed
Sinègre, G., Gaven, B., and Jullien, J. L.. 1980. Contribution à la normalisation des épreuves de laboratoire concernant les formulations expérimentales et commerciales du sérotype H-14 de Bacillus thuringiensis. III. Influence séparée ou conjointe de la densité larvaire, du volume ou profondeur de l'eau et de la présence de terre sur l'efficacité et l'action larvicide résiduelle d'une poudre primaire. Unpub. Wld. Hlth. Org. mimeo. document, WHO/VBC/80.772 (Geneva). 9 pp.Google Scholar
Singer, S. 1975. Isolation and development of bacterial pathogens of vectors. pp. 3–14 in Biological regulation of vectors: Proceedings, National Institutes of Health Workshop. DHEW Publ. (NIH) 771180.Google Scholar
Wraight, S.P., Singer, S., and Jamnback, H.. 1978. A comparison of the effectiveness of Bacillus sphaericus/SSII-1 against Aedes stimulans and Ae. triseriatus larvae (Diptera: Culicidae) at different temperatures. (abstract) J. N.Y. ent. Soc. 86: 329.Google Scholar
Wraight, S.P., Molloy, D., Jamnback, H., and McCoy, P.. 1981. Effects of temperature and instar on the efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus strain 1593 against Aedes stimulans larvae. J. invert. Path. 38: 7887.CrossRefGoogle Scholar