Skip to main content
    • Aa
    • Aa

Comparisons of the composition of foliage-dwelling spider assemblages in apple orchards and adjacent deciduous forest

  • T.E. Sackett (a1), C.M. Buddle (a1) and C. Vincent (a2)

Previous studies have shown that annual crops have different spider (Araneae) assemblages than adjacent relatively natural habitats, suggesting that spider recolonization of crops occurs via long-distance ballooning and that spider species in crops are mainly agrobionts. However, in perennial crops, e.g., apple (Malus domestica Borkhausen (Rosaceae)), which are subject to less physical disturbance than annual crops, overlap in spider species has been observed between tree foliage and adjacent habitats, suggesting that spiders colonize orchards from adjacent vegetation. The objective of this study was to compare the species composition of assemblages of foliage-dwelling spiders in apple orchards with that in adjacent deciduous forest and to determine whether spider assemblages in orchards are dominated by agrobiont species. Spiders were collected from four apple orchards and adjacent deciduous forest in southern Quebec from May until August 2004. The similarity of assemblages between the orchard and forest habitats was evaluated using nonmetric multidimensional scaling and multiresponse permutation procedures and spider species richness in the two habitat types was compared using rarefaction. Although spider species richness was higher in the forest than in the orchards, the composition of the spider assemblages in apple orchards was not significantly different from that in adjacent deciduous forest at three of the four sites. Therefore, adjacent deciduous forest, which is similar to orchards in vegetation structure and frequency of structural disturbance, is likely the main source of spiders found in apple orchards.


Des études antérieures ont montré que les cultures annuelles abritent des peuplements d’araignées différents de ceux des habitats à peu près naturels adjacents, ce qui laisse croire que la recolonisation des cultures se fait par parachutage de longue distance et que les espèces d’araignées qui habitent les cultures sont des agrobiontes. Cependant, dans les cultures permanentes (par ex., les vergers), qui connaissent des niveaux moins élevés de perturbation physique que les cultures annuelles, on observe un chevauchement entre les espèces d’araignées du feuillage des arbres et celles des habitats adjacents, ce qui laisse penser que les araignées colonisent les vergers à partir de la végétation environnante. L’objectif de notre étude est de comparer la composition spécifique des peuplements d’araignées vivant dans le feuillage de pommeraies (Malus domestica Borkhausen (Rosaceae)) et dans celui de la forêt décidue adjacente et de déterminer si les peuplements d’araignées des vergers sont dominés par des espèces agrobiontes. Nous avons récolté des araignées dans quatre pommeraies du sud du Québec, Canada, et dans la forêt décidue adjacente de mai à août 2004. Le cadrage multidimensionnel non métrique (NMDS) et des procédures de permutation à réponses multiples (MRPP) nous ont servi à évaluer la similarité des peuplements dans les vergers et les habitats forestiers; une procédure de raréfaction a permis de comparer la richesse spécifique dans les habitats. Bien que la richesse spécifique des araignées soit plus élevée dans les forêts que dans les vergers, la composition des peuplements d’araignées des pommeraies ne diffère pas significativement de celle de la forêt décidue adjacente à trois des quatre sites. En conséquence, il est vraisemblable que la forêt décidue adjacente, qui ressemble aux vergers par la structure de sa végétation et la fréquence de ses perturbations structurales, soit une source majeure des araignées dans les pommeraies.

[Traduit par la Rédaction]

Corresponding author
2Corresponding author (e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

W.I. Bajwa , and M.T. Aliniazee 2001. Spider fauna in apple ecosystem of western Oregon and its field susceptibility to chemical and microbial insecticides. Journal of Economic Entomology, 94: 6875.

M.L. Beals 2006. Understanding community structure: a data-driven multivariate approach. Oecologia, 150: 484495.

F. Bianchi , C.J.H. Booij , and T. Tscharntke 2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B Biological Sciences, 273: 17151727.

L. Bishop , and S.E. Riechert 1990. Spider colonization of agroecosystems — mode and source. Environmental Entomology, 19: 17381745.

S. Bogya , V. Markó , and C. Szinetár 2000. Effect of pest management systems on foliage- and grass-dwelling spider communities in an apple orchard in Hungary. International Journal of Pest Management, 46: 241250.

Y. Clough , A. Kruess , D. Kleijn , and T. Tscharntke 2005. Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. Journal of Biogeography, 32: 20072014.

M. Dufrêne , and P. Legendre 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345366.

W.J. Ehmann 1994. Organization of spider assemblages on shrubs — an assessment of the role of dispersal mode in colonization. American Midland Naturalist, 131: 301310.

M.H. Greenstone 1984. Determinants of web spider species-diversity — vegetation structural diversity vs prey availability. Oecologia, 62: 299304.

J.M. Halley , C.F.G. Thomas , and P.C. Jepson 1996. A model for the spatial dynamics of linyphiid spiders in farmland. Journal of Applied Ecology, 33: 471492.

M.W. Heikkinen , and J.A. MacMahon 2004. Assemblages of spiders on models of semi-arid shrubs. Journal of Arachnology, 32: 313323.

M. Isaia , F. Bona , and G. Badino 2006. Influence of landscape diversity and agricultural practices on spider assemblage in Italian vineyards of Langa Astgiana (northwest Italy). Environmental Entomology, 35: 297307.

G.A. Langellotto , and R.F. Denno 2004. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia, 139: 110.

P. Marc , and A. Canard 1997. Maintaining spider biodiversity in agroecosystems as a tool in pest control. Agriculture, Ecosystems and Environment, 62: 229235.

P. Marc , A. Canard , and F. Ysnel 1999. Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems and Environment, 74: 229273.

J.P. McCaffrey , and R.L. Horsburgh 1980. The spider (Arachnida, Araneae) fauna of apple trees in central Virginia. Environmental Entomology, 9: 247252.

B.J. McNett , and A.L. Rypstra 2000. Habitat selection in a large orb-weaving spider: vegetational complexity determines site selection and distribution. Ecological Entomology, 25: 423432.

E.R. Miliczky , and D.R. Horton 2005. Densities of beneficial arthropods within pear and apple orchards affected by distance from adjacent native habitat and association of natural enemies with extra-orchard host plants. Biological Control, 33: 249259.

M. Nyffeler , and K.D. Sunderland 2003. Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agriculture, Ecosystems and Environment, 95: 579612.

S. Pekàr 1999 a. Effect of IPM practices and conventional spraying on spider population dynamics in an apple orchard. Agriculture, Ecosystems and Environment, 73: 155166.

S. Pekár 1999 b. Foraging mode: a factor affecting the susceptibility of spiders (Araneae) to insecticide applications. Pesticide Science, 55: 10771082.

S.E. Riechert , and T. Lockley 1984. Spiders as biological control agents. Annual Review of Entomology, 29: 299320.

J.V. Robinson 1981. The effect of architectural variation in habitat on a spider community — an experimental field study. Ecology, 62: 7380.

F. Samu , and C. Szinetár 2002. On the nature of agrobiont spiders. Journal of Arachnology, 30: 389402.

F. Samu , V. Racz , C. Erdelyi , and K. Balazs 1997. Spiders of the foliage and herbaceous layer of an IPM apple orchard in Kecskemet-Szarkas, Hungary. Biological Agriculture and Horticulture, 15: 131140.

M.H. Schmidt , and T. Tscharntke 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography, 32: 467473.

K. Sunderland , and F. Samu 2000. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomologia Experimentalis et Applicata, 95: 113.

P. Thorbek , and C.J. Topping 2005. The influence of landscape diversity and heterogeneity on spatial dynamics of agrobiont linyphiid spiders: an individual-based model. Biocontrol, 50: 133.

G.S. Weyman 1993. A review of the possible causative factors and significance of ballooning in spiders. Ethology, Ecology and Evolution, 5: 279291.

J. Wisniewska , and R.J. Prokopy 1997. Pesticide effect on faunal composition, abundance, and body length of spiders (Araneae) in apple orchards. Environmental Entomology, 26: 763776.

S.A. Wissinger 1997. Cyclic colonization in predictably ephemeral habitats: a template for biological control in annual crop systems. Biological Control, 10: 415.

F. Ysnel , and A. Canard 2000. Spider biodiversity in connection with the vegetation structure and the foliage orientation of hedges. Journal of Arachnology, 28: 107114.

G.M. Zimmerman , H. Goetz , and P.W. Mielke 1985. Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology, 66: 606611.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Canadian Entomologist
  • ISSN: 0008-347X
  • EISSN: 1918-3240
  • URL: /core/journals/canadian-entomologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 24 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.