Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-16T14:53:49.044Z Has data issue: false hasContentIssue false

Controlling life stages of Tribolium castaneum (Coleoptera: Tenebrionidae) in stored rye using microwave energy

Published online by Cambridge University Press:  02 April 2012

R. Vadivambal
Affiliation:
Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada R3T 5V6
D. S. Jayas*
Affiliation:
Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada R3T 5V6
N. D. G. White
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada R3T 2M9
*
1 Corresponding author (address for correspondence: 207, Administration Building, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2; e-mail: digvir_jayas@umanitoba.ca).

Abstract

A pilot-scale industrial microwave unit operating at 2450 MHz was used to test whether microwave treatment can control Tribolium castaneum (Herbst) populations infesting stored rye, Secale cereale L. (Poaceae). Tests were performed in samples of rye (50 g) with 14%, 16%, or 18% moisture content. Samples containing T. castaneum eggs, larvae, pupae, or adults were exposed to 200, 300, 400, or 500 W for periods of 28 or 56 s, resulting in final surface temperatures ranging from 47.2 to 83.9 °C. Eggs were most vulnerable; adults were least vulnerable. Subsequent tests showed that microwaves reduced rye germination and flour yield. No effect of treatment on grain protein content, falling number, sodium dodecyl sulfate sedimentation volume, mixograph and farinograph dough development times, or baking properties was detected.

Résumé

Un appareil industriel à micro-ondes à l'échelle pilote fonctionnant à 2450 MHz nous a servi à vérifier si un traitement aux micro-ondes pouvait contrôler les populations de Tribolium castaneum (Herbst) qui infestent le seigle, Secale cereale L. (Poaceae), en entrepôt. Les tests ont été réalisés sur des échantillons de seigle (50 g) présentant des teneurs en humidité de 14 %, 16 % et 18 %. Nous avons exposé des échantillons contenant des œufs, des larves, des nymphes ou des adultes de T. castaneum à 200, 300, 400 ou 500 W pendant des périodes de 28 ou de 56 s, ce qui a produit des températures superficielles finales variant de 47,2 à 83,9 °C. L'œuf est le stade le plus susceptible et l'adulte le moins. Des tests subséquents ont montré que les micro-ondes réduisent la germination du seigle et le rendement de la farine. Aucun effet du traitement n’est apparent sur les protéines des graines, sur l'indice de viscosité, sur la sédimentation, sur la mixographie, sur la farinographie, ni sur la cuisson.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265267.CrossRefGoogle Scholar
Agriculture Canada. 1981. Red flour beetle. Insect identification Sheet No. 75. Agriculture Canada, Ottawa, Ontario.Google Scholar
Akbas, Y., and Takma, C. 2005. Canonical correlation analysis for studying the relationship between egg production traits and body weight, egg weight and age at sexual maturity in layers. Czechoslovak Journal of Animal Science, 50: 163168.CrossRefGoogle Scholar
American Association of Cereal Chemists. 2000. Approved methods of American Association of Cereal Chemists. 10th ed. American Association of Cereal Chemists, St. Paul, Minnesota.Google Scholar
American Society of Agricultural and Biological Engineers (ASABE). 2006. ASABE standards 2006: moisture measurements—unground grain and seeds. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan.Google Scholar
Arthur, F.H. 2006. Initial and delayed mortality of late-instar larvae, pupae, and adults of Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) exposed at variable temperatures and time intervals. Journal of Stored Products Research, 42: 17. doi:10.1016/j.jspr.2004.10.003.CrossRefGoogle Scholar
Blaszczak, W., Gralik, J., Klockiewicz-Kaminska, E., Fornal, J., and Warchalewski, J.R. 2002. Effect of γ-radiation and microwave heating on endosperm microstructure in relation to some technological properties of wheat grain. Nahrung, 46: 122129. doi:10.1002/1521-3803(20020301)46:2<122::AID-FOOD122>3.0.CO;2-J.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Campana, L.E., Sempe, M.E., and Filgueria, R.R. 1993. Physical, chemical, and baking properties of wheat dried with microwave energy. Cereal Chemistry, 70: 760762.Google Scholar
Dolinska, R., Warchalewski, J.R., Gralik, J., and Jankowski, T. 2004. Effect of γ- radiation and microwave heating of wheat grain on some starch properties in irradiated grain as well as in grain of the next generation crops. Nahrung, 48: 195200. doi:10.1002/food.200300380.CrossRefGoogle Scholar
Fields, P.G. 1992. The control of stored-product insects and mites with extreme temperatures. Journal of Stored Products Research, 28: 89118. doi:10.1016/0022-474X(92)90018-L.CrossRefGoogle Scholar
Gooding, M.J., Cannon, N.D., Thompson, A.J., and Davies, W.P. 1999. Quality and value of organic grain from contrasting breadmaking wheat cultivars and near isogenic lines differing in dwarfing genes. Biological Agriculture and Horticulture, 16: 335350.CrossRefGoogle Scholar
Halverson, W.R., Bigelow, T.S., and Halverson, S.L. 2003. Design of high power microwave applicator for the control of insects in stored products. Paper No. 036156, American Society of Agricultural Engineers, St. Joseph, Michigan.Google Scholar
Hamid, M.A.K., and Boulanger, R.J. 1969. A new method for the control of moisture and insect infestations of grain by microwave power. Journal of Microwave power, 4: 1118.CrossRefGoogle Scholar
Hamid, M.A.K., Kashyap, C.S., and Cauwenberghe, R.V. 1968. Control of grain insects by microwave power. Journal of Microwave Power, 3: 126135.CrossRefGoogle Scholar
Hasan, M., and Khan, A.T. 1998. Control of stored-product pests by irradiation. Integrated Pest Management Review, 3: 1529. doi:10.1023/A:1009621606024.CrossRefGoogle Scholar
Hill, D.S. 1990. Pests of stored products and their control. CRC Press, Boca Raton, Florida.Google Scholar
Hurlock, E.T., Llewelling, B.E., and Stables, L.M. 1979. Microwaves can kill insect pests. Food Manufacture, 54: 3739.Google Scholar
Ikediala, J.N., Tang, J., Neven, L.G., and Drake, S.R. 1999. Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality, and fruit quality. Postharvest Biology and Technology, 16: 127137. doi:10.1016/S0925-5214(99)00018-6.CrossRefGoogle Scholar
Kirkpatrick, R.L., and Roberts, J.R. 1970. Insect control in wheat using microwave energy. Journal of Economic Entomology, 64: 950951.CrossRefGoogle Scholar
Lhaloui, S., Hagstrum, D.W., Keith, D.L., Holtzer, T.O., and Ball, H.J. 1988. Combined influence of temperature and moisture on red flour beetle (Coleoptera: Tenebrionidae) reproduction on whole grain wheat. Journal of Economic Entomology, 81: 488489.CrossRefGoogle Scholar
Mahroof, R., Subramanyam, B., and Eustace, D. 2003. Temperature and relative humidity profiles during heat treatment of mills and its efficacy against Tribolium castaneum (Herbst) life stages. Journal of Stored Products Research, 39: 555569. doi:10.1016/S0022-474X(02)00062-0.CrossRefGoogle Scholar
Menon, A., and Subramanyam, B. 2000. Heat sterilization—can it effectively control insects? In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emission Reductions, 6–9 November 2000, Orlando, Florida. Edited by Obenauf, G.L. and Obenauf, R.. pp. 91.191.4.Google Scholar
Nelson, S.O. 1996. Review and assessment of radiofrequency and microwave energy for stored-grain insects control. Transactions of the American Society of Agricultural Engineers, 39: 14751484.CrossRefGoogle Scholar
Nelson, S.O., and Stetson, L.E. 1974 a. Comparative effectiveness of 39 and 2450 MHz electric fields for control of rice weevils in wheat. Journal of Economic Entomology, 67: 592595.CrossRefGoogle Scholar
Nelson, S.O., and Stetson, L.E. 1974 b. Possibilities for controlling insects with microwaves and lower frequency RF energy. IEEE Transactions on Microwave Theory and Techniques, 22: 13031305. doi:10.1109/TMTT.1974.1128482.CrossRefGoogle Scholar
Palav, T., and Seetharaman, K. 2006. Impact of microwave heating on the physico-chemical properties of starch–water model system. Carbohydrate Polymers, 67: 596604. doi:10.1016/j.carbpol.2006.07.006.CrossRefGoogle Scholar
Preston, K.R., Kilborn, R.H., and Black, H.C. 1982. The GRL pilot mill. II. Physical dough and baking properties of flour steams milled from Canadian Red Spring Wheat. Canadian Institute of Food Science and Technology, 15: 2936.CrossRefGoogle Scholar
SAS Institute, Inc. 2002. SASH® user's guide: statistics. Version 9.1. SAS Institute, Inc., Cary, North Carolina.Google Scholar
Shayesteh, N., and Barthakur, N.N. 1996. Mortality and behavior of two stored-product insect species during microwave irradiation. Journal of Stored Products Research, 32: 239246. doi:10.1016/S0022-474X(96)00016-1.CrossRefGoogle Scholar
Tilton, E.W., and Brower, J.H. 1983. Radiation effects on arthropods. In Preservation of food by ionizing radiation. Vol. 2. Edited by Josephson, E.S. and Peterson, M.S.. CRC Press, Boca Raton, Florida. pp. 269316.Google Scholar
Vadivambal, R., Jayas, D.S., and White, N.D.G. 2007. Wheat disinfestation using microwave energy. Journal of Stored Products Research, 43: 508514. doi:10.1016/j.jspr.2007.01.007.CrossRefGoogle Scholar
Wallace, H.A.H., and Sinha, R.N. 1962. Fungi associated with hot spots in farm stored grain. Canadian Journal of Plant Science, 42: 130141. doi:10.4141/cjps62-016.CrossRefGoogle Scholar
Wang, S., Tang, J., Cavalieri, R.P., and Davis, D.C. 2003. Differential heating of insects in dried nuts and fruits associated with radio frequency and microwave treatments. Transactions of the American Society of Agricultural and Biological Engineers, 46: 11751182.Google Scholar
Watters, F.L. 1976. Microwave radiation for control of Tribolium confusum in wheat and flour. Journal of Stored Products Research, 12: 1925. doi:10.1016/0022-474X(76)90018-7.CrossRefGoogle Scholar