Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-22T14:11:55.829Z Has data issue: false hasContentIssue false

Description and phylogenetic interpretation of chromatophore migration from larval air sacs to adult structures in some Chaoboridae (Diptera)

Published online by Cambridge University Press:  02 April 2012

Christopher J. Borkent*
Affiliation:
Department of Natural Resource Sciences, Macdonald Campus, McGill University, 21 111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, Canada H9X 3V9
Art Borkent
Affiliation:
691–8th Avenue SE, Salmon Arm, British Columbia, Canada V1E 2C2, Research associate of the Royal British Columbia Museum, 675 Belleville Street, Victoria, British Columbia, Canada V8W 9W2, American Museum of Natural History, Central Park West, New York, NY 10024-5192, United States of America, and Instituto Nacional de Biodiversidad, P.O. Box 22-3100, Santo Domingo de Heredia, Costa Rica
*
1Corresponding author (e-mail: chris.borkent@mail.mcgill.ca).

Abstract

During development, many chromatophores on the air sacs of larvae of Chaoborus Lichtenstein disperse to the tracheal trunks and throughout the body of the pupae. In male pupae, chromatophores on the posterior air sacs move to the developing testes and vasa deferentia and some become the adventitious spotting previously reported for adults of Chaoborus. In larvae of Mochlonyx Loew, chromatophores have a similar development pattern, but in female pupae some also surround the spermathecae. Larvae of Eucorethra Underwood have chromatophores scattered throughout much of the body but it is uncertain whether these are homologous to those of Chaoborus and Mochlonyx. Outgroup comparisons show that the migration of chromatophores from the larval air sacs to the adult male testes and vasa deferentia is a synapomorphy of Chaoborinae. The presence of pigmented fat body on the larval testes in many Culicidae, Eucorethra, and Mochlonyx is plesiomorphic, and the transparent larval testes in Chaoborus are a synapomorphy of the genus. The dark adult testes in Mochlonyx are derived from pigmented larval fat body and chromatophores from the larval air sacs, and this is proposed as an intermediate evolutionary state. It is likely that the chromatophores surrounding the testes of pupae of Chaoborinae provide protection against ultraviolet radiation, but further study is needed.

Résumé

Pendant le développement, beaucoup de chromatophores sur les sacs d’air des larves de Chaoborus Lichtenstein dispersent vers les troncs trachéaux de la pupe et dans tout le corps. Dans les pupes mâles, ceux des sacs d’air postérieurs se déplacent vers les testicules en développement et le canal déférent. Certains des chromatophores deviennent la tache adventice précédemment rapportée pour des adultes de Chaoborus. Les larves de Mochlonyx Loew possèdent un patron similaire de développement, alors que certains de ceux retrouvés dans les pupes femelles entourent également les spermathèques. Les larves d’Eucorethra Underwood ont des chromatophores dispersés à travers la majorité de leur corps, mais il est incertain qu’ils soient homologues à ceux de Chaoborus et Mochlonyx. Les comparaisons de groupes externes prouvent que la migration des chromatophores des sacs d’air larvaires jusqu’aux testicules et au canal déférent du mâle adulte est une synapomorphie des Chaoborinae. La présence de masse adipeuse pigmentée sur les testicules larvaires chez beaucoup de Culicidae, Eucorethra, et Mochlonyx est une plésiomorphie, alors que les testicules larvaires transparents de Chaoborus sont une synapomorphie du genre. Les testicules foncés chez l’adulte de Mochlonyx sont dérivés de masse adipeuse larvaire pigmentée et des chromatophores des sacs d’air larvaires, et ceux-ci sont proposés comme état évolutif intermédiaire. Il est probable que les chromatophores entourant les testicules des pupes de Chaoborinae assurent la protection contre le rayonnement ultraviolet, mais des études plus poussées sont nécessaires.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adie, H.A. 1912. Distinction of sex in the larval and pupal stages of Anophelines. Paludism, 1912: 41.Google Scholar
Adler, P.H., Currie, D.C., and Wood, D.M. 2004. The black flies (Simuliidae) of North America. Cornell University Press, Ithaca, New York.Google Scholar
Akehurst, S.C. 1922. Larva of Chaoborus crystallinus (De Geer) (Corethra plumicornis F.). Journal of the Royal Microscopical Society, 15: 341372.Google Scholar
Allison, E.H., Irvine, K., and Thompson, A.B. 1996. Lake flies and the deep-water demersal fish community of Lake Malawi. Journal of Fish Biology, 48: 10061010.Google Scholar
Boeing, W.J., Leech, D.M., Williamson, C.E., Cooke, S., and Torres, L. 2004. Damaging UV radiation and invertebrate predation: conflicting selective pressures for zooplankton vertical distribution in the water column of low DOC lakes. Oecologia, 138: 603612.CrossRefGoogle ScholarPubMed
Borkent, A. 1993. A world catalogue of fossil and extant Corethrellidae and Chaoboridae (Diptera), with a listing of references to keys, bionomic information and descriptions of each known life stage. Entomologica Scandinavica, 24: 124.CrossRefGoogle Scholar
Borkent, A., Borkent, C.J., and Sinclair, B.J. 2008. The male genital tract of Chaoboridae (Diptera: Culicomorpha). The Canadian Entomologist, 140: 621629.CrossRefGoogle Scholar
Colless, D.H. 1986. The Australian Chaoboridae (Diptera). Australian Journal of Zoology, Supplemental Series, 124: 166.Google Scholar
Cook, E.F. 1956. The Nearctic Chaoborinae (Diptera: Culicidae). Technical Bulletin of the University of Minnesota Agricultural Experiment Station, 218: 1102.Google Scholar
Gersch, M. 1956. Untersuchungen zur Frage der Hormonalen Beeinflussung der Chromatophoren bei der Corethra-Larve. Zeitschrift für vergleichende Physiologie, 39: 190208.CrossRefGoogle Scholar
Giguère, L.A., and Northcote, T.G. 1987. Ingested prey increase risks of visual predation in transparent Chaoborus larvae. Oecologia, 73: 4852.CrossRefGoogle ScholarPubMed
Hadorn, E., and Frizzi, G. 1949. Esperimentelle Untersuchungen zur Melanophorne Reaktion von Corethra. Revue Suisse de Zoologie, 56: 306315.Google Scholar
Hinton, H.E. 1958. On the nature and metamorphosis of the colour pattern of Thaumalea (Diptera, Thaumaleidae). Journal of Insect Physiology, 2: 249260.CrossRefGoogle Scholar
Hinton, H.E. 1959. The function of chromatocytes in the Simuliidae, with notes on their behaviour at the pupa–adult moult. Quarterly Journal of Microscopical Science, 100: 6571.Google Scholar
Hodapp, C.J., and Jones, J.C. 1961. The anatomy of the adult male reproductive system of Aedes aegypti (Linnaeus) (Diptera, Culicidae). Annals of the Entomological Society of America, 54: 832844.CrossRefGoogle Scholar
Horppila, J., and Nurminem, L. 2007. The intensity and spectral composition of upwelling light in relation to the density of Chaoborus flavicans swarms. Fundamental and Applied Limnology (Archiv für Hydrobiologie), 169: 259263.Google Scholar
Jell, P.A., and Duncan, P.M. 1986. Invertebrates, mainly insects, from the freshwater, Lower Cretaceous, Koonwarra fossil bed (Korumburra Group), South Gippsland, Victoria. Memoir of the Association of Australasian Palaeontologists, 3: 111205.Google Scholar
Jones, J.C. 1957. A simple method for sexing living Anopheles larvae (Diptera, Culicidae). Annals of the Entomological Society of America, 50: 104106.CrossRefGoogle Scholar
Lane, J. 1953. Neotropical Culicidae. Vol. 1. University of São Paulo, São Paulo, Brazil.Google Scholar
Langeron, M. 1926. Sexualité des larves de moustiques. Annales de Parasitologie Humaine et Comparée, 4: 126135.CrossRefGoogle Scholar
Leech, D.M., and Williamson, C.E. 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon, or lake transparency? Ecological Applications, 10: 15301540.CrossRefGoogle Scholar
Lukashevich, E.D. 1996. New chaoborids from the Mesozoic of Mongolia (Diptera: Chaoboridae). Paleontologicheskii Zhurnal, 1996(4): 55–60. [In Russian with English summary; translation in Paleontological Journal, 30: 551558.]Google Scholar
Meinert, F. 1886. De eucephale Myggelarver. Videnskabernes Selskab Skrifter, 6: 373493.Google Scholar
Ogawa, J. 2004. Chaoborids [online]. Available from http://oregonstate.edu/~ogawajo/chaoborid.html [accessed 14 May 2008].Google Scholar
Persaud, A.D., and Yan, N.D. 2003. UVR sensitivity of Chaoborus larvae. Ambio, 32: 219224.Google Scholar
Persaud, A.D., and Yan, N.D. 2005. Developmental differences and a test for reciprocity in the tolerance of Chaoborus punctipennis larvae to ultraviolet radiation. Canadian Journal of Fisheries and Aquatic Sciences, 62: 483491.CrossRefGoogle Scholar
Persaud, A.D., Arts, M.T., and Yan, N.D. 2003. Photoresponses of late instar Chaoborus punctipennis larvae to UVR. Aquatic Ecology, 37: 257265.Google Scholar
Sinclair, B.J., Borkent, A., and Wood, D.M. 2007. The male genital tract and aedeagal components of the Diptera with a discussion of their phylogenetic significance. Zoological Journal of the Linnean Society, 150: 711742.CrossRefGoogle Scholar
Sæther, O.A. 1992. Redescription of Cryophila lapponica Bergroth (Diptera: Chaoboridae) and the phylogenetic relationship of the chaoborid genera. Aquatic Insects, 14: 121. (Addendum: Aquatic Insects, 14: 193–194)CrossRefGoogle Scholar
Teraguchi, S.E. 1972. Regulation of buoyancy by Chaoborus americanus (Joh.). Ph.D. thesis, University of Wisconsin, Madison, Wisconsin.Google Scholar
Teraguchi, S. 1975. Correction of negative buoyancy in the phantom larva, Chaoborus americanus. Journal of Insect Physiology, 21: 16591670.Google Scholar
Vargas, M. 1968. Sexual dimorphism of the larvae and pupae of Aedes aegypti (Linn.). Mosquito News, 28: 374379.Google Scholar
Warren, M.E., and Breland, O.P. 1963. Studies on the gonads of some immature mosquitoes. Annals of the Entomological Society of America, 56: 619624.CrossRefGoogle Scholar
Weber, W., and Grosmann, M. 1988. Ultrastructure of the chromatophores system on the tracheal bladders of the phantom larva of Chaoborus crystallinus (Insecta, Diptera). Zoomorphology, 108: 167171.CrossRefGoogle Scholar
Wemhöner, K., and Weber, W. 1974. Innervation des Tracheenblasenepithels bei der Büschelmücke Corethra plumicornis (Chaoborus). Experientia, 30: 10761077.Google Scholar