Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-21T22:57:52.919Z Has data issue: false hasContentIssue false

DIFFERENTIAL MORTALITY BETWEEN MALE AND FEMALE CHORISTONEURA OCCIDENTALIS (LEPIDOPTERA: TORTRICIDAE) LARVAE EXPOSED TO A BACULOVIRUS WITH OR WITHOUT OPTICAL BRIGHTENERS

Published online by Cambridge University Press:  31 May 2012

S.Y. Li
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
I.S. Otvos
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5

Abstract

Fifth-instar larval mortality was compared between male and female Choristoneura occidentalis Freeman exposed in the laboratory to sublethal doses of Choristoneura fumiferana (Clem.) multicapsid nuclear polyhedrosis virus (CfMNPV) with or without optical brighteners. More females than males died when the virus was used alone, but differences were not significant. When 1% brightener was added to CfMNPV suspension, differences in larval mortality between males and females were significant for three of the four brighteners tested. In addition, times at which 50% of the larvae died indicated that female larvae died 23 and 39% more quickly than male larvae, respectively, when brightener Blankophor HRS and Tinopal LPW were added to the virus, whereas at times at which 95% of the larvae died indicated that females died 33 and 54% faster than males. Alteration of sex ratio favoring male survival can play a significant role in the biological control of C. occidentalis by the virus.

Résumé

La mortalité des larves de cinquième stade a été comparée chez des mâles et des femelles de Choristoneura occidentalis Freeman exposées en laboratoire à des doses sublétales du virus responsable de la polyhédrose nucléaire chez Choristoneura fumiferana, le CfMNPV, en présence ou en l’absence de décolorants optiques. La mortalité a atteint plus de femelles que de mâles en présence du virus seul, mais les différences n’étaient pas significatives. À l’addition de 1% de décolorant optique à la suspension de virus, les différences entre la mortalité des larves mâles et celle des larves femelles sont devenues significatives pour trois des quatre décolorants utilisés. De plus, la valeur du LT50 a démontré que les larves femelles sont mortes 23% plus rapidement que les mâles en présence du décolorant Blankophor HRS et 39% plus rapidement en présence du décolorant Tinopal LPW avec le virus. En tenant compte du LT95, les femelles sont mortes 33 et 54% plus rapidement que les mâles en présence des mêmes décolorants. Une augmentation du rapport mâles : femelles favorisant la survie des mâles peut jouer un rôle important dans la lutte biologique contre C. occidentalis au moyen du virus.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Ben-Shaked, Y., and Harpaz, I.. 1966. Protection of a susceptible insect host against a nuclear polyhedrosis virus by ether extracts from insect larvae. Journal of Invertebrate Pathology 8: 283285.CrossRefGoogle ScholarPubMed
Harvey, G.T., and Stehr, G.. 1967. On coniferophagous species of Choristoneura (Lepidoptera: Tortricidae) in North America. III. Some characters of immature forms helpful in the identification of species. The Canadian Entomologist 99: 464481.CrossRefGoogle Scholar
Geier, P.W., and Oswald, L.T.. 1977. The light-brown apple moth, Epiphyas postvittana (Walker) 1. Effects associated with contaminations by a nuclear polyhedrosis virus on the demographic performance of a laboratory strain. Australian Journal of Ecology 2: 929.Google Scholar
Goulson, D., and Cory, J.S.. 1995. Sublethal effects of baculovirus in the cabbage moth, Mamestra brassicae. Biological Control 5: 361367.CrossRefGoogle Scholar
LeOra Software. 1994. Polo-PC. A user's guide to probit or logit analysis. LeOra Software, Berkeley, CA.Google Scholar
Li, S.Y., and Otvos, I.S.. 1998 a. Optical brighteners enhance activity of a nuclear polyhedrosis virus against western spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology. In press.Google Scholar
Li, S.Y., and Otvos, I.S.. 1998 b. Comparison of the activity enhancement of a baculovirus by optical brighteners against laboratory and field strains of Choristoneura occidentalis (Lepidoptera: Tortricidae). Journal of Economic Entomology. In press.Google Scholar
Melamed-Madjar, V., and Raccah, B.. 1979. The transstadial and vertical transmission of a granulosis virus from the corn borer Sesamia nonagroides. Journal of Invertebrate Pathology 33: 259264.CrossRefGoogle Scholar
Otvos, I.S., Cunningham, J.C., and Kaupp, W.J.. 1989. Aerial application of two baculoviruses against the western spruce budworm, Choristoneura occidentalis Freeman (Lepidoptera: Tortricidae), in British Columbia. The Canadian Entomologist 121: 209217.CrossRefGoogle Scholar
Patil, U.R., Savanurmath, C.J., Mathad, S.B., Aralaguppi, P.I., and Ingalhalli, S.S.. 1989. Effects of nuclear polyhedrosis virus on the growth, development and reproduction in surviving generations of the armyworm Mythimna (Pseudaletia) separata (Walker). Journal of Applied Entomology 108: 527532.CrossRefGoogle Scholar
Robertson, J.L. 1979. Rearing the western spruce budworm. Canada – United States Spruce Budworms Program, USDA Forest Service, Washington, DC.Google Scholar
Robertson, J.L., and Preisler, H.K.. 1992. Pesticide bioassays with arthropods. CRC Press, Boca Raton, FL.Google Scholar
Sait, S.M., Begon, M., and Thomson, D.J.. 1994. The effects of a sublethal infection in the Indian meal moth, Plodia interpunctella. Journal of Animal Ecology 63: 541550.CrossRefGoogle Scholar
Santiago-Alvarez, C., and Vargas-Osuna, E.. 1986. Differential mortality between male and female Spodoptera littoralis larvae infected with a baculovirus. Journal of Invertebrate Pathology 47: 374376.CrossRefGoogle Scholar
Santiago-Alvarez, C., and Vargas-Osuna, E.. 1988. Reduction of reproductive capacity of Spodoptera littoralis males by a nuclear polyhedrosis virus (NPV). Journal of Invertebrate Pathology 52: 142146.CrossRefGoogle Scholar
Shapiro, M., and Robertson, J.L.. 1987. Yield and activity of gypsy moth (Lepidoptera: Lymantriidae) nucleopolyhedrosis virus recovered from survivors of virus challenge. Journal of Economic Entomology 80: 901905.CrossRefGoogle Scholar
SPSS Inc. 1996. Statistics: SYSTAT 6.0 for windows. SPSS Inc., Chicago, IL.Google Scholar
Vail, P.V., and Hall, I.M.. 1969. The influence of infections of nuclear polyhedrosis virus on adult cabbage loopers and their progeny. Journal of Invertebrate Pathology 13: 358370.CrossRefGoogle Scholar
Vargas-Osuna, E., and Santiago-Alvarez, C.. 1988. Differential response of male and female Spodoptera littoralis (Boisduval) (Lep.: Noctuidae) individuals to a nuclear polyhedrosis virus. Journal of Applied Entomology 105: 374378.CrossRefGoogle Scholar
Wigley, P.J. 1980. Counting micro-organisms. pp. 2935in Kalmakoff, J., and Longworth, J.F. (Eds.), Microbial control of pests. New Zealand Department of Scientific and Industrial Research Bulletin 228.Google Scholar
Yearian, W.C., Young, S.Y., and Livingston, J.M.. 1973. Field evaluation of a nuclear polyhedrosis virus of Neodiprion taedae linearis. Journal of Invertebrate Pathology 22: 3437.CrossRefGoogle Scholar
Young, S.Y., and Yearian, W.C.. 1982. Nuclear polyhedrosis infection of Pseudoplusia includens (Lep.: Noctuidae) larvae: effect on post larval stages and transmission. Entomophaga 27: 6166.CrossRefGoogle Scholar