Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-05T19:26:57.857Z Has data issue: false hasContentIssue false

DISTRIBUTION OF ATTACKS ON SPRUCE STUMPS BY THE SPRUCE BEETLE, DENDROCTONUS RUFIPENNIS (KIRBY) (COLEOPTERA: SCOLYTIDAE), AND EFFECTS ON THE LENGTH OF EGG GALLERIES

Published online by Cambridge University Press:  31 May 2012

L. Safranyik
Affiliation:
Canadian Forestry Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
D.A. Linton
Affiliation:
Canadian Forestry Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5

Abstract

The distribution of spruce beetle attacks and length of associated egg galleries were investigated on 21 spruce stumps over a 4-year period in central British Columbia. Attack density formed a distinct vertical gradient which peaked near the duff line at about one-third stump height above the mineral soil. The proportion of attacks on the stumps that were located below the duff was linearly related to the ratio of stump height below duff and total stump height above mineral soil. Attack density was significantly higher below the duff than above. A three-parameter exponential function gave satisfactory fit to the attack density gradient on normalized stump height. A discrete-step theoretical model was also developed based on assumptions regarding beetle behavior during landing and imitation of the egg gallery and the physical characteristics of the host. This model gave an excellent fit to the attack density gradient as an average process over all stumps. Average egg gallery length was a curvilinear function of attack density with maximum average egg gallery length occurring at about 0.33 attacks per 100 cm2.

Résumé

Durant 4 ans, nous avons étudié, dans le centre de la Colombie-Britannique, la répartition des attaques du dendroctone de l’épinette sur 21 souches d’épinettes ainsi que la longueur des galeries de ponte. La densité des attaques se répartissait selon un gradient vertical dont le maximum culminait près du niveau de la litière, au tiers environ de la hauteur de la souche au-dessus du sol minéral. La proportion des attaques sous la litière était en relation directe avec le rapport de la hauteur de la souche sous la litière à sa hauteur totale au-dessus du sol minéral. La densité des attaques était significativement plus élevée au-dessous du niveau de la litière qu’au-dessus. Une fonction exponentielle triparamétrique décrit de façon satisfaisante le gradient de densité des attaques sur une souche de hauteur normalisée. Un modèle théorique à pas discrets a aussi été construit, compte tenu d’hypothèses concernant le comportement du dendroctone à sa pose, de l’imitation des galeries de ponte et des caractéristiques physiques de l’hôte. Le modèle reproduit de façon excellente le gradient de densité des attaques, quant à sa moyenne établie pour toutes les souches. La longueur moyenne des galeries de ponte était une fonction curviligne de la densité des attaques, la longueur maximale correspondant à environ 0,33 attaque par superficie de 100 cm2.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berryman, A.A. 1974. Dynamics of bark beetle populations: towards a general productivity model. Environ. Ent. 3: 579585.CrossRefGoogle Scholar
Coulson, R.N., Fargo, W.S., Pulley, P.E, Pope, D.N, Foltz, J.L, and Bunting, A.M.. 1979. Spatial and temporal patterns of emergence for within-tree populations of Dendroctonus frontalis (Col.: Scolytidae). Can. Ent. 111: 273289.CrossRefGoogle Scholar
Coulson, R.N., Mayyasi, A.M, Hain, F.P, and Martin, W.C.. 1976. Resource utilization by the southern pine beetle, Dendroctonus frontalis (Coleoptera: Scolytidae). Can. Ent. 108: 353362.CrossRefGoogle Scholar
Dudley, C.D. 1971. A sampling design for the egg and first instar larval populations of the western pine beetle Dendroctonus brevicomis (Coleoptera: Scolytidae). Can. Ent. 103: 12911313.CrossRefGoogle Scholar
Dyer, E.D.A., and Taylor, D.W.. 1971. Spruce beetle brood production in logging slash and windthrown trees in British Columbia. Can. For. Serv., Pac. For. Res. Cent. Inf. Rep. BC–X–62.Google Scholar
Frye, R.H., and Wygant, N.D.. 1971. Spruce beetle mortality in cacodylic acid-treated Engelman spruce trap trees. J. econ. Ent. 64: 911916.CrossRefGoogle Scholar
Marquardt, D.W. 1963. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11: 431441.CrossRefGoogle Scholar
Massey, C.L., and Wygant, N.D.. 1954. Biology and control of the Engelmann spruce beetle in Colorado. U.S. Dept. Agric. Circ. 944. 35 pp.Google Scholar
Saarenma, H. 1983. Modeling the spatial pattern and intraspecific competition in Tomicus piniperda (Coleoptera: Scolytidae). Commun. Inst. Forestal. Fenn. 118.Google Scholar
Safranyik, L. 1978. Spruce beetle mortality in stumps following an operational broadcast burn. Can. For. Serv. Bi-mon. Res. Notes 34(2): 78.Google Scholar
Safranyik, L., and Linton, D.A.. 1985. Influence of competition on size, brood production and sex ratio in spruce beetles (Coleoptera: Scolytidae). J. ent. Soc. Brit. Columb. 82: 5256.Google Scholar
Safranyik, L., and Vithaysai, C.. 1971. Some characteristics of the spatial arrangement of attacks by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae), on lodgepole pine. Can. Ent. 103: 16071625.CrossRefGoogle Scholar
Schmid, J.M. 1977. Guidelines for minimizing spruce beetle populations in logging residuals. USDA For. Serv. Res. Pap. RM-185, 8 pp. Rocky Mt. For. Range Exp. Stn., Fort Collins, CO.Google Scholar
Shepherd, R.F. 1965. Distribution of attacks by Dendroctonus ponderosae Hopk. on Pinus contorta Dougl. var. latifolia Engelm. Can. Ent. 97(2): 207215.CrossRefGoogle Scholar
Steel, R.D.G., and Torrie, J.H.. 1980. Principles and procedures of statistics. A biometrical approach, 2nd ed. McGraw-Hill, Inc. 632 pp.Google Scholar
Thomson, A.J., and Sahota, T.S.. 1981. Competition and population quality in Dendroctonus rufipennis (Coleoptera: Scolytidae). Can. Ent. 113: 177183.CrossRefGoogle Scholar