Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T01:24:16.788Z Has data issue: false hasContentIssue false

Effects of sublethal doses of chlorfluazuron on the biochemical constituents of eggs of Spodoptera litura (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  03 January 2012

F. Perveen*
Affiliation:
Laboratory of Applied Entomology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
*
2Corresponding author (e-mail: farzana_san@hotmail.com).

Abstract

The effects of sublethal doses (LD10: 1.00 ng/larva; LD30: 3.75 ng/larva) of chlorfluazuron on the biochemical constituents of eggs of the tobacco cutworm, Spodoptera litura (F.), are described. Chlorfluazuron was applied topically to fifth-instar larvae and the subsequent adults were allowed to mate according to larval treatment (LD10-treated female × LD10-treated male and LD30-treated female × LD30-treated male). Biochemical constituents of eggs resulting from these pairings were analyzed at various stages of embryonic development. Compared with controls, LD10 or LD30 reduced egg constituents as follows: protein (min.–max.) by 32.8%–34.5% or 62.0%–67.3%, lipid by 33%–34% or 62%–67%, carbohydrates by 30%–39% or 60%–67%, DNA by 33%–40% or 60%–69%, RNA by 31%–34% or 59%–67%, and ecdysteroid by 22%–83% or 28%–92%, respectively. The relative proportions of constituents in control eggs were as follows: protein > lipid > carbohydrate, and RNA > DNA. Three low and three high peaks in ecdysteroid titres were observed. Compared with controls, all peaks were reduced in LD10 or LD30 eggs as follows: low peaks: 1st (at 8 h): 32% or 66%; 2nd (at 16 h): 33% or 67%; 3rd (at 52 h): 35% or 65%; high peaks: 1st (at 32 h): 83% or 92%; 2nd (at 64 h): 65% or 82%; 3rd (at 84 h): 84 h, 36% or 63%, respectively. In addition, the first two high peaks were delayed by 4 h in LD10 eggs and by 8 h in LD30 eggs compared with controls. Sublethal doses of chlorfluazuron reduced the amounts of biochemical constituents of eggs during embryogenesis in S. litura.

Résumé

Notre étude décrit les effets de doses sublétales (LD10 : 1,00 ng/larve; LD30 : 3,75 ng/larve) de chlorfluazuron sur les constituants biochimiques des œufs du ver gris commun, Spodoptera litura (F.). Nous avons procédé à un traitement topique des larves de cinquième stade au chlorfluazuron et avons laissé les adultes produits s’accoupler en fonction du traitement larvaire (femelle traitée par LD10 x mâle traité par LD10 et femelle traitée par LD30 x mâle traité par LD30). Nous avons analysé les constituants biochimiques des œufs produits par ces accouplements à diverses étapes du développement embryonnaire. Les constituants des œufs sont réduits par LD10 et LD30, les protéines (min.–max.) respectivement de 32,8 % – 34,5 % et de 62,0 % – 67,3 %, les lipides de 33 % – 34 % et de 62 % – 67 %, les hydrates de carbone de 30 % – 39 % et de 60 % – 67 %, l’ADN de 33 % – 40 % et de 60 % – 69 %, l’ARN de 31 % – 34 % et de 59 % – 67% et les ecdystéroïdes de 22 % – 83 % et de 28 % – 92 %. Les proportions relatives des constituants dans les œufs témoins sont par ordre protéines>lipides>hydrates de carbone et ARN>ADN. On observe trois maximums élevés et trois minimums plus bas dans les titres d’ecdystéroïdes. Par comparaison aux témoins, tous les maximums sont réduits chez les œufs traités par LD10 et LD30: les maximums bas, le premier à 8h respectivement de 32 % et de 66%, le second à 16 h de 33 et de 67 % et le troisième à 52 h de 35 % et de 65 %; les maximums élevés, le premier à 32 h respectivement de 83 % et de 92 %, le second à 64 h de 65 % et de 82 % et le troisième à 84 h de 36 % et de 63 %. De plus, il y a un délai de 4 h dans les deux premiers maximums élevés chez les œufs traités par LD10 et de 8h chez ceux traités par LD30 par comparaison aux témoins. Les doses sublétales de chlorfluazuron réduisent donc les quantités des constituants biochimiques des œufs durant l’embryogenèse chez S. litura.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abacus Concepts. 1989. Super ANOVA. Abacus Concepts, Inc., Berkeley, California.Google Scholar
Anderson, D.T. 1972. The development of holometabolous insects. In Developmental systems: insects. Vol. I. Edited by Counce, S.J. and Waddington, C.H.. Academic Press, New York. pp. 166242.Google Scholar
Bownes, M., Shirras, A., Blair, M., Collins, J., and Coulson, A. 1988. Evidence that insect embryogenesis is regulated by ecdysteroids released from yolk proteins. Proceedings of the National Academy of Sciences of the United State of America, 85: 15541557. doi:10.1073/pnas.85.5. 1554. PMID:3125550.CrossRefGoogle ScholarPubMed
Burton, K. 1956. Method for the determination of nucleic acids. Journal of Biochemistry, 62: 300315.Google Scholar
Czihak, G., and Horstadius, S. 1970. Transplantation of RNA-labelled micromeres into animal halves of sea urchin embryos: a contribution to the problem of embryonic induction. Developmental Biology, 22: 1530. doi:10.1016/0012-1606(70)90003-5. PMID:4912504.CrossRefGoogle Scholar
Dudash, A.U. 1979. The content of protein and nucleic acid in the fat body of the Colorado beetle, Leptinotarsa decemlineata. Zürich Zoologia, 58: 655658.Google Scholar
Hashizume, B. 1988. Atabron 5E, a new IGR insecticide (chlorfluazuron). Japan Pesticide Information, 58: 3234.Google Scholar
Holst, H.Z. 1974. Die fertilitätsbeeinflussende Wirkung des neuen Insektizids P D 60-40 bei Epilachna varivestis Muls (Col. Coccinellidae) und Leptinotarsa decemlineata Say (Col. Chrysomelidae). Z. Pflanzenkr. Pflanzenschutz, 81:17.Google Scholar
Muller, N.S. 1963. An experimental analysis of moulting in embryos of Melanoplus differentialis. Developmental Biology, 8: 222240. doi:10.1016/0012-1606(63)90043-5.CrossRefGoogle Scholar
Munro, H.N. 1966. The determination of nucleic acids. In Methods of biochemical analysis. Vol. 14. Edited by Glick, D.. Wiley Interscience, New York, USA. pp. 113176.CrossRefGoogle Scholar
Omatsu, M., Yoshida, K., and Toki, T. 1991. Development of malformed larvae induced by a benzoyl phenyl urea insecticide chlorfluazuron in the common cutworm, Spodoptera litura Fabricius. Journal of Pesticide Science, 16: 189194.CrossRefGoogle Scholar
Perveen, F. 2000. Sublethal effects of chlorfluazuron on reproductivity andviability of Spodoptera litura (F.) (Lep., Noctuidae). Journal of Applied Entomology, 124: 223231. doi:10.1046/j.1439-0418.2000.00468.x.CrossRefGoogle Scholar
Perveen, F. 2006. Reduction in egg-hatch after a sublethal dose of chlorfluazuron to larvae of the common cutworm, Spodoptera litura. Physiological Entomology, 31: 3945. doi:10.1111/j.1365-3032.2005.00483.x.CrossRefGoogle Scholar
Perveen, F. 2008. Effects of sublethal doses of chlorfluazuron on insemination and number of inseminated sperm in the common cutworm, Spodoptera litura (F.) (Lepidoptera; Noctuidae). Entomological Science, 11: 111121. doi:10.1111/j.1479-8298.2007.00252.x.CrossRefGoogle Scholar
Perveen, F. 2009. Effects of residual chlorfluazuron on haemolymph-borne oviposition-stimulating factors in Spodoptera litura. Entomologia Experimentalis et Applicata, 132: 241249. doi:10.1111/j.1570-7458.2009.00888.x.CrossRefGoogle Scholar
Perveen, F., and Miyata, T. 2000. Effects of sublethal dose of chlorfluazuron on ovarian development and oögenesis in the common cutworm, Spodoptera litura (F.) Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 93: 11311137. doi:10.1603/0013-8746(2000)093[1131:EOSDOC]2.0.CO;2.CrossRefGoogle Scholar
Perveen, F., Ahmed, H., Abbasi, F.M., Siddiqui, N.Y., and Gul, A. 2010. Characterization of embryonic stages through variations in the egg's contents in Spodoptera litura. Journal of Agricultural Science and Technology, 4: 2436.Google Scholar
Retnakaran, A., Macdonald, A., Nicholson, D., and Cunningham, J.P. 1989. Ultrastructural and autoradiographic investigations of the interference of chlorfluazuron with cuticle differentiation in the spruce bud worm, Choristoneura fumiferana. Pesticide Biochemistry and Physiology, 35:172184. doi:10.1016/0048-3575(89)90115-6.CrossRefGoogle Scholar
Sander, K. 1976. Specification of the basic body pattern in insect embryogenesis. Advances in Insect Physiology, 12: 125238. doi:10.1016/S0065-2806(08)60255-6.CrossRefGoogle Scholar
Scheffé, H. 1953. A method for judging all contrasts in the analysis of variance. Biometrika, 40: 87104.Google Scholar
Schmidt, G., and Thannhauser, S.I. 1945. A method for the determination of deoxyribonucleic acid, ribonucleic acid and phosphoprotein in animal tissues. Journal of Biological Chemistry, 161:8392. PMID:21005717.CrossRefGoogle ScholarPubMed
Schneider, W.C. 1957. Determination of nucleic acid in tissues by pentose analysis. In Method in enzymology. Vol. III. Edited by Colowick, S.P. and Kaplan, N.O.. Academic Press, Dordrecht, The Netherlands. pp. 680684.Google Scholar
Skibbe, J.T., Challaghan, P.T., Eccles, C.D., and Laing, W.A. 1995. Visualization of pH in the larval midgut of Spodoptera litura using 31P-NMR microscopy. Journal of Insect Physiology, 42: 777790. doi:10.1016/0022-1910(96)00019-4.CrossRefGoogle Scholar
Wright, J.E., and Spates, G.E. 1976. Reproductive inhibition activity of the insect growth regulator Th-6040 against the stable and house fly: effect on hatchability. Journal of Economic Entomology, 69: 365368. PMID:956494.CrossRefGoogle ScholarPubMed