Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-30T06:04:52.864Z Has data issue: false hasContentIssue false

FEEDING RESPONSES OF THE WHITE PINE WEEVIL, PISSODES STROBI (PECK) (COLEOPTERA: CURCULIONIDAE), IN RELATION TO HOST RESISTANCE IN BRITISH COLUMBIA

Published online by Cambridge University Press:  31 May 2012

Elizabeth S. Tomlin
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
John H. Borden
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

Feeding preferences of the white pine weevil, Pissodes strobi (Peck), for resistant or susceptible Sitka spruce, Picea sitchensis (Bong) Carr., were investigated using three types of laboratory bioassay. In paired-twig bioassays, fall weevils were significantly deterred from feeding up to 80% by resistant clones from four British Columbia provenances: Green Timbers, Cedarvale, Haney, and Big Qualicum. Females showed greater discrimination than males. Spring weevils were deterred from feeding by clones from the Green Timbers and Big Qualicum provenances by up to 60%. Fall males were more consistently deterred than spring males, suggesting that some host selection occurs in the fall. Females were significantly deterred from ovipositing on twigs from one clone from Big Qualicum, and stimulated by clones from Cedarvale when given a choice. Given no choice, however, they were significantly deterred from ovipositing, but not feeding by several resistant clones. In agar-disc bioassays, spring weevils were significantly deterred from feeding by bark from the provenances of Cedarvale and Big Qualicum by up to 86%. Trees from the provenances of Big Qualicum and Green Timbers caused the most consistent feeding or oviposition deterrency and may rely on this in part as a resistance mechanism. Because not all resistant clones and provenances were deterrent, we hypothesize that these trees may employ other resistance mechanisms which could be incorporated along with feeding and oviposition deterrency into breeding for resistance.

Résumé

Les préférences alimentaires du Charançon du pin blanc, Pissodes strobi (Peck), pour les épinettes de Sitka, Picea sitchensis (Bong) Carr., résistantes ou sensibles ont été déterminées au cours de trois types d’expériences en laboratoire. Au cours d’expériences où les rameaux étaient pairés, les charançons d’automne ont réagi en réduisant considérablement leur alimentation, jusqu’à 80%, en présence de clones résistants de quatre provenances en Colombie-Britannique, Green Timbers, Cedarvale, Haney et Big Qualicum. Les femelles étaient encore plus sélectives que les mâles. Au printemps, les charançons ont réduit leur alimentation, jusqu’à 60%, en présence de clones de Green Timbers et de Big Qualicum. Les mâles d’automne étaient toujours plus inhibés que les mâles de printemps, ce qui indique qu’il se fait un certain degré de sélection de l’hôte à l’automne. En présence d’un choix, les femelles s’abstenaient de pondre leurs oeufs sur des rameaux d’un clone de Big Qualicum et étaient stimulées à pondre par des clones de Cedarvale. Lorsqu’elles n’avaient pas le choix cependant, le comportement de ponte de ces femelles, mais pas leur alimentation, était significativement inhibé par plusieurs clones résistants. Dans les expériences sur disques d’agar, l’alimentation des charançons de printemps était significativement inhibée, jusqu’à 86%, en présence d’écorces provenant de Cedarvale et de Big Qualicum. Les arbres en provenance de Big Qualicum et de Green Timbers sont ceux qui ont inhibé le plus l’alimentation et la ponte des charançons et il est possible que ces propriétés inhibitrices fassent partie de leurs mécanismes de résistance. Cependant, comme les clones résistants et les arbres des diverses provenances n’ont pas tous des propriétés inhibitrices, nous croyons que les arbres utilisent d’autres mécanismes de résistance qui, combinés à l’inhibition de la ponte et de l’alimentation, pourraient contribuer à la sélection de la résistance chez ces arbres.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I. 1980. Host Selectivity by Pissodes strobi Peck: Chemical Interaction with the Host Plant. Ph.D. thesis, Simon Fraser University, Burnaby, B.C.134 pp.Google Scholar
Alfaro, R.I. 1994. The white pine weevil in British Columbia: Biology and damage. pp. 7–22 in Alfaro, R.I., Kiss, G., and Fraser, R.G. (Eds.), The White Pine Weevil: Biology, Damage and Management Proceedings. January 19–21, 1994, Richmond, B.C.FRDA Report 226: 311 pp.Google Scholar
Alfaro, R.I. 1995. An induced defense reaction in white spruce to attack by the white pine weevil, Pissodes strobi. Canadian Journal of Forest Research 25: 17251730.CrossRefGoogle Scholar
Alfaro, R.I., and Borden, J.H.. 1982. Host selection by the white pine weevil, Pissodes strobi Peck: Feeding bioassays using host and nonhost plants. Canadian Journal of Forest Research 12: 6470.CrossRefGoogle Scholar
Alfaro, R.I. 1985. Factors determining the feeding of the white pine weevil (Coleoptera: Curculionidae) on its coastal British Columbia host, Sitka spruce. Proceedings of the Entomological Society of Ontario, Supplement 116: 6366.Google Scholar
Alfaro, R.I., and Omule, S.A.Y.. 1990. The effect of spacing on Sitka spruce weevil damage to Sitka spruce. Canadian Journal of Forest Research 20: 179184.Google Scholar
Alfaro, R.I., and Ying, C.C.. 1990. Levels of Sitka spruce weevil, Pissodes strobi (Peck), damage among Sitka spruce provenances and families near Sayward, British Columbia. The Canadian Entomologist 122: 607615.CrossRefGoogle Scholar
Alfaro, R.I., Pierce, H.D. Jr., Borden, J.H., and Oehlschlager, A.C.. 1979. A quantitative feeding bioassay for Pissodes strobi Peck (Coleoptera: Curculionidae). Journal of Chemical Ecology 5: 663671.Google Scholar
Alfaro, R.I., Pierce, H.D. Jr., Borden, J.H., and Oehlschlager, A.C.. 1980. Role of volatile and nonvolatile components of Sitka spruce bark as feeding stimulants for Pissodes strobi Peck (Coleoptera: Curculionidae). Canadian Journal of Zoology 58: 626632.CrossRefGoogle Scholar
Anderson, J.M., and Fisher, K.C.. 1956. Repellency and host specificity in the white pine weevil. Physiological Zoology 29: 314324.CrossRefGoogle Scholar
Brooks, J.E., and Borden, J.H.. 1992. Development of a Resistance Index for Sitka Spruce against the White Pine Weevil Pissodes strobi Peck. Canadian Forest Service, Pacific Forestry Centre, FRDA Report 180: 18 pp.Google Scholar
Brooks, J.E., Borden, J.H., and Pierce, H.D. Jr., 1987. Foliar and cortical monoterpenes in Sitka spruce: Potential indicators of resistance to the white pine weevil, Pissodes strobi Peck (Coleoptera: Curculionidae). Canadian Journal of Forest Research 17: 740745.CrossRefGoogle Scholar
Feeny, P. 1975. Plant apparency and chemical defense. Recent Advances in Phytochemistry 10: 139.Google Scholar
Gerhold, H.D. 1966. In quest of insect-resistant forest trees. pp. 305–323 in Gerhold, H.D., McDermott, R.E., Schreinrer, E.J., and Winjeski, J.A. (Eds.), Breeding Pest Resistant Trees. Pergammon, New York, NY. 505 pp.Google Scholar
Hanover, J.W. 1975. Physiology of tree resistance to insects. Annual Review of Entomology 20: 7595.CrossRefGoogle Scholar
Hall, P.M. 1994. Ministry of Forests perspective on spruce reforestation in British Columbia. pp. 1–6 in Alfaro, R.I., Kiss, G., and Fraser, R.G. (Eds.), The White Pine Weevil: Biology, Damage and Management Proceedings. January 19–21, 1994, Richmond, B.C.FRDA Report 226: 311 pp.Google Scholar
Harman, D.M., and Kulman, H.M.. 1966. A technique for sexing live white pine weevils, Pissodes strobi. Annals of the Entomological Society of America 59: 315317.Google Scholar
Harris, L.J., Alfaro, R.I., and Borden, J.H.. 1990. Role of needles in close-range selection by the white pine weevil on Sitka spruce. Journal of the Entomological Society of British Columbia 87: 2225.Google Scholar
Kogan, M., and Ortman, E.F.. 1978. Antixenosis—a new term proposed to define Painter's “non-preference” modality of resistance. Bulletin of the Entomological Society of America 24: 175176.CrossRefGoogle Scholar
Lewis, K. 1995. Genetic Variations among Populations of Pissodes strobi (White Pine Weevil) reared from Picea and Pinus Hosts as inferred from RAPD Markers. M.Sc. thesis, University of British Columbia, Vancouver, B.C.232 pp.Google Scholar
McMullen, L.H., Thomson, A.J., and Quenet, R.V.. 1987. Sitka Spruce Weevil (Pissodes strobi) Population Dynamics and Control: A Simulation Model based on Field Relationships. Canadian Forest Service, Pacific Forestry Centre, Information Report BC–X–288: 20 pp.Google Scholar
Mitchell, R.G., Wright, K.H., and Johnson, N.E.. 1990. Damage by the Sitka Spruce Weevil (Pissodes strobi) and Growth Patterns for 10 Spruce Species and Hybrids Over 26 Years in the Pacific Northwest. USDA Forest Service Research Paper PNW–RP–434: 12 pp.Google Scholar
Norris, D.M. 1986. Anti-feeding compounds. pp. 98–146 in Haug, G., and Hoffman, H. (Eds.), Chemistry of Plant Protection I. Springer-Verlag, Berlin. 151 pp.Google Scholar
Painter, R.H. 1968. pp. 23–83 in Insect Resistance in Crop Plants. University Press of Kansas, Lawrence & London. 520 pp.Google Scholar
Rhoades, D.F. 1975. Evolution of plant chemical defenses against herbivores. pp. 3–53 in Rosenthal, G.A., and Janzen, D.H. (Eds.), Herbivores. Their Interaction with Secondary Plant Metabolites. Academic Press, New York, NY. 718 pp.Google Scholar
Sahota, T.S., Manville, J.F., and White, E.. 1994. Interaction between Sitka spruce weevil and its host Picea sitchensis: A new mechanism for resistance. The Canadian Entomologist 126: 10671074.CrossRefGoogle Scholar
SAS Institute Inc. 1988. SAS Users Guide, release 6.03 ed. SAS Institute Inc., Cary, NC. 1028 pp.Google Scholar
Schlotzhauer, S.D., and Littell, R.C.. 1987. SAS System for Elementary Statistical Analysis. SAS Institute Inc., Cary, NC. 416 pp.Google Scholar
Soles, R.L., Gerhold, H.D., and Palpant, E.H.. 1970. Resistance of western white pine to the white pine weevil. Journal of Forestry 68: 766768.Google Scholar
Stiell, W.M., and Berry, A.B.. 1985. Limiting white pine weevil attacks by side shade. Forestry Chronicle 61: 59.Google Scholar
Stroh, R.C., and Gerhold, H.D.. 1965. Eastern white pine characteristics related to weevil feeding. Silvae Genetica 14: 141176.Google Scholar
Tomlin, E.S., and Borden, J.H.. 1994 a. Relationship between leader morphology and resistance or susceptibility of Sitka spruce to the white pine weevil. Canadian Journal of Forest Research 24: 810816.CrossRefGoogle Scholar
Tomlin, E.S., and Borden, J.H.. 1994 b. Development of a multicomponent resistance index for Sitka spruce resistant to the white pine weevil. pp. 117–133 in Alfaro, R.I., Kiss, G., and Fraser, R.G. (Eds.), The White Pine Weevil: Biology, Damage and Management Proceedings. January 19–21, 1994, Richmond, B.C.FRDA Report 226: 311 pp.Google Scholar
Tomlin, E.S., Borden, J.H., and Pierce, H.D. Jr., 1995. Relationship between cortical resin acids and resistance of Sitka spruce to the white pine weevil. Canadian Journal of Botany 74: 599606.Google Scholar
VanderSar, T.J.D. 1978. Resistance of western white pine to feeding and oviposition by Pissodes strobi Peck in western Canada. Journal of Chemical Ecology 4: 641647.CrossRefGoogle Scholar
VanderSar, T.J.D., and Borden, J.H.. 1977 a. Visual orientation of Pissodes strobi Peck (Coleoptera: Curculionidae) in relation to host selection behaviour. Canadian Journal of Zoology 55: 20422049.Google Scholar
VanderSar, T.J.D., and Borden, J.H.. 1977 b. Role of geotaxis and phototaxis in the feeding and oviposition behaviour of overwintered Pissodes strobi. Environmental Entomology 6: 743749.Google Scholar
VanderSar, T.J.D., and Borden, J.H.. 1977 c. Aspects of host selection behaviour of Pissodes strobi (Coleoptera: Curculionidae) as revealed in laboratory feeding bioassays. Canadian Journal of Zoology 55: 405414.Google Scholar
Wagner, M.R., Benjamin, D.M., Clancy, K.M., and Schuh, B.A.. 1983. Influence of diterpene resin acids on feeding and growth of larch sawfly, Pristiphora erichsonii (Hartig). Journal of Chemical Ecology 9: 119127.Google Scholar
Woodward, S., and Pearce, R.B.. 1988. The role of stilbenes in resistance of Sitka spruce (Picea sitchensis (Bong.) Carr.) to entry of fungal pathogens. Physiological and Molecular Plant Pathology 33: 127149.Google Scholar
Ying, C.C. 1991. Genetic Resistance to the White Pine Weevil in Sitka Spruce. British Columbia Ministry of Forests Research Note 106: 17 pp.Google Scholar
Zerillo, R.T., and Odell, T.M.. 1973. White pine weevil: A rearing procedure and artificial medium. Journal of Economic Entomology 66: 593594.CrossRefGoogle Scholar