Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T17:26:29.774Z Has data issue: false hasContentIssue false

FORUM: THE ARBOREAL SUPERHIGHWAY: ARTHROPODS AND LANDSCAPE DYNAMICS

Published online by Cambridge University Press:  31 May 2012

Neville N. Winchester
Affiliation:
Department of Biology, University of Victoria, PO Box 3020, Victoria, British Columbia, Canada VSW 3N5

Abstract

Species richness of arthropods in northern temperate coastal rain forests far exceeds previous estimates, and the functional significance that these species play in ecosytem processes remains largely unknown. Examination of several species, many of which are not yet described, indicates that these intact ancient rain forests are structurally complex and act as reservoirs for biological diversity. Forest harvesting and resulting fragmentation affects arthropod diversity by altering key patterns of natural processes which are inseparably linked to habitat diversity. Consequences for arthropods may vary but those species which are endemic or inseparably linked to habitat features found only in these forests are particularly vulnerable to fragmentation-induced changes. Several important questions arise. What are the implications of forest fragmentation on ecological processes? What role does dispersal play in arthropod population viability? Given the immense biodiversity of arthropods, what are the functional roles that the species play in these forests and how are these changed when forests are harvested? The lack of empirical evidence makes it difficult to answer these questions and to quantify the functional roles of arthropods in these ecosystems.To address these questions, I suggest that studies should not rely on single-species approaches and the measurement of diversity (i.e. species richness and abundance) but should focus on addressing the functional roles of forest arthropods. To move beyond the basic description of pattern I suggest that studies concentrate on describing species assemblages while including dynamic processes such as dispersal into the framework of how we think about arthropods in ancient forests. The use of feeding guilds in the development of predictive models may give us an understanding of these factors and provide information that could be used to examine functional patterns in community structure.

Résumé

La richesse en espèces d’arthropodes dans les forêts pluvieuses côtières de la zone tempérée du nord dépasse largement les estimations antérieures et l’importance fonctionnelle de ces espèces dans les processus des écosystèmes est encore peu connue. L’examen d’un grand nombre d’espèces, dont plusieurs restent encore à décrire, indique que ces vieilles forêts pluvieuses vierges sont très complexes et constituent des réservoirs de diversité biologique. L’exploitation des forêts et la fragmentation qui en résulte affectent la diversité des arthropodes en modifiant les mécanismes habituels des processus naturels qui sont reliés de façon inéluctable à la diversité de l’habitat. Les effets sur les arthropodes peuvent varier, mais les espèces endémiques ou spécifiquement reliées à des propriétés écologiques inhérentes aux vielles forêts sont particulièrement vulnérables aux changements apportés par la fragmentation. Des questions fondamentales se posent. Quelles sont les conséquences de la fragmentation des forêts sur les processus écologiques? Quel rôle joue la dispersion dans la viabilité des populations d’arthropodes? Vu la prodigieuse biodiversité des arthropodes, quel est le rôle fonctionnel des différentes espèces dans ces forêts et comment ce rôle est-il affecté par l’exploitation des forêts? L’absence de preuves empiriques rend difficile la tâche de répondre à ces questions et de quantifier le rôle fonctionnel des arthropodes dans ces écosystèmes.Pour aborder ces questions, je crois qu’il faudrait orienter les recherches de façon à ce qu’elles ne se concentrent pas sur une seule espèce ou sur la mesure de la diversité (i.e. richesse en espèces et abondance), mais qu’elles abordent la question du rôle fonctionnel des arthropodes dans les forêts. Pour parvenir au-delà d’une simple description de base des processus, je crois qu’il faudrait que les efforts de recherche soient concentrés sur des associations d’espèces et tiennent compte des processus dynamiques, tels la dispersion, dans la création d’un cadre conceptuel d’étude des arthropodes dans les vielles forêts. L’élaboration de modèles prédictifs basés sur les guildes trophiques peut approfondir notre connaissance de ces facteurs et donner lieu à des informations utilisables dans l’examen des mécanismes fonctionnels de structuration des communautés.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behan-Pelletier, V.M., and Winchester, N.N.. 1997. Arboreal oribatid mite diversity: colonizing the canopy. Applied Soil Ecology. In press.Google Scholar
Campbell, J.M., and Winchester, N.N.. 1993. First record of Pseudohaida rothi Hatch (Coleoptera: Staphylinidae: Omaliinae) from Canada. Journal of the Entomological Society of British Columbia 90: 83.Google Scholar
Didham, R.K., Ghazoul, J., Stork, N.E., and Davis, A.J.. 1996. Insects in fragmented forests: a functional approach. Trends in Ecology and Evolution 11: 255260.CrossRefGoogle ScholarPubMed
Doak, D.F., Marino, P.C., and Kareiva, P.M.. 1992. Spatial scale mediates the influence of habitat fragmention on dispersal success: implications for conservation. Theoretical Population Biology 41: 315336.Google Scholar
Dunning, J.B., Danielson, J.B., and Pulliam, H.R.. 1992. Ecological processes that affect populations in complex landscapes. Oikos 65: 169175.Google Scholar
Erwin, T.L. 1983. Tropical forest canopies: the last biotic frontier. Bulletin of the Ecological Society of America 64: 1419.CrossRefGoogle Scholar
Franklin, J.F. 1993. Preserving biodiversity: species, ecosystems, or landscapes? Ecological Applications 3: 202205.CrossRefGoogle ScholarPubMed
Hudson, W.E. (Ed.). 1991. Landscape Linkages and Biodiversity. Defenders of Wildlife, Island Press, Washington, District of Columbia. 196 pp.Google Scholar
Hurlburt, S.H. 1971. The non-concept of species diversity: a critique and altenative parameters. Ecology 52: 577586.CrossRefGoogle Scholar
Klein, B.C. 1989. Effects of forest fragmentation on dung and carrion beetle communities in central Amazonia. Ecology 70: 17151725.Google Scholar
Kreman, C., Colwell, R.K., Erwin, T.L., Murphy, D.D., Noss, R.F., and Sanjayan, M.A.. 1993. Terrestrial arthropod assemblages: their use in conservation planning. Conservative Biology 7: 797808.Google Scholar
Laurance, W.F., and Yensen, E. 1991. Predicting the impacts of edge effects on fragmented habitats. Biological Conservation 55: 7792.CrossRefGoogle Scholar
Mladenoff, D.J., White, M.A., and Pastor, J.. 1993. Comparing spatial pattern in unaltered old-growth and disturbed forest landscapes. Ecological Applications 3: 294306.Google Scholar
Moran, V.C., and Southwood, T.R.E.. 1982. The guild composition of arthropod communities in trees. Journal of Animal Ecology 51: 289306.Google Scholar
Pielou, E.C. 1993. Measuring biodiversity: quantitative measures of quality. pp. 8595in Fenger, M.A., Millar, E.H., Johnson, J.F., and Williams, E.J.R. (Eds.), Our Living Legacy: Proceedings of a Symposium on Biological Diversity. Royal British Columbia Museum, Victoria, B.C.Google Scholar
Root, R.B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37: 317350.CrossRefGoogle Scholar
Root, R.B. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs 43: 95124.Google Scholar
Saunders, D.A., Hibbs, R.J., and Margules, C.R.. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5: 1832.Google Scholar
Schowalter, T.D. 1985. Adaptations of insects to disturbance. pp. 235252in Pickett, S.T.A., and White, P.S. (Eds.), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York.Google Scholar
Schowalter, T.D. 1986. Ecological strategies of forest insects: the need for a community-level approach to reforestation. New Forests 1: 5766.CrossRefGoogle Scholar
Schowalter, T.D. 1989. Canopy arthropod community structure and herbivory in old-growth and regenerating forests in western Oregon. Canadian Journal of Forest Research 19: 318322.CrossRefGoogle Scholar
Schowalter, T.D. 1990. Differences and consequences for insects. pp. 91106in Pearson, A.F., and Challenger, D.A. (Eds.), Forest—Wild and Managed: Differences and Consequences. Students for Forestry Awareness, University of British Columbia, Vancouver, British Columbia.Google Scholar
Soulé, M.E. 1991. Conservation: tactics for a constant crisis. Science (Washington, DC) 253: 744750.Google Scholar
Southwood, T.R.E. 1961. The number of species of insects associated with various trees. Journal of Animal Ecology 30: 18.CrossRefGoogle Scholar
Southwood, T.R.E., Moran, V.C., and Kennedy, C.E.J.. 1982. The richness, abundance and biomass of the arthropod communities on trees. Joumal of Animal Ecology 51: 645649.Google Scholar
Stork, N.E. 1987. Guild structure of arthropods from Bornean rain forest trees. Ecological Entomology 12: 6980.CrossRefGoogle Scholar
Stork, N.E. 1988. Insect diversity: facts, fiction and speculation. Biological Journal of the Linnean Society 35: 321337.CrossRefGoogle Scholar
Straw, N.A., and Ludlow, A.R.. 1994. Small-scale dynamics and insect diversity on plants. Oikos 71: 188192.Google Scholar
Taylor, P.D., Fagrig, L., Henein, K., and Merriam, G.. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571573.Google Scholar
Urban, D.L., O'Neill, R.V., and Shugart, H.H. Jr., 1987. Landscape ecology. BioScience 37: 119127.CrossRefGoogle Scholar
Wilcove, D.C., McLellan, C.H., and Dobson, A.P.. 1986. Habitat fragmentation in the temperate zong. pp. 237256in Soulé, M.E. (Ed.), Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
Winchester, N.N. 1993. Coastal Sitka spruce canopies: conservation of biodiversity. Bioline 11: 914.Google Scholar
Winchester, N.N. 1997. Canopy arthropods of coastal Sitka spruce trees on Vancouver Island, British Columbia, Canada. pp. 151168in Stork, N.E., Adis, J.A., and Didham, R.K. (Eds.), Canopy Arthropods. Chapman and Hall, London.Google Scholar
Winchester, N.N., and Ring, R.A. 1996 a. Centinelan extinctions: extirpation of Northern temperate old-growth rainforest arthropod communities. Selbyana 17(1): 5057.Google Scholar
Winchester, N.N., and Ring, R.A. 1996 b. Northern temperate coastal Sitka spruce forests with special emphasis on canopies: Studying arthropods in an unexplored frontier. Northwest Science 70 (Special issue): 94103.Google Scholar