Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T03:57:23.427Z Has data issue: false hasContentIssue false

Molecular systematics of the Pardosa groenlandica species complex (Araneae: Lycosidae): large sample sizes fail to find monophyletic species

Published online by Cambridge University Press:  23 January 2015

Jozef Slowik*
Affiliation:
University of Alaska Museum, 907 Yukon Dr., Fairbanks, Alaska 99775-6960, United States of America
Derek S. Sikes
Affiliation:
University of Alaska Museum, 907 Yukon Dr., Fairbanks, Alaska 99775-6960, United States of America
*
1Corresponding author (e-mail: slowikspider@gmail.com).

Abstract

Relationships within the Pardosa groenlandica species complex (sensu Slowik and Sikes 2013) were analysed to test two competing hypotheses – the species complex consists of either four or seven species. We conducted a partitioned Bayesian analyses of the mitochondrial gene COI and the nuclear genes ITS1, 5.8S, and ITS2. These genes provided a dataset composed of 1874 nucleotides each from 144 specimens. Additional analyses included application of the DNA barcoding protocol and a phylogeographic study of a subset of specimens. Analyses found no support for either hypothesis and only one species was found monophyletic in a subset of analyses. Mitochondrial DNA yielded clades discordant with geography. Species in the P. groenlandica species complex show various amounts of genetic support, with a general lack of agreement between genetics and morphology for species boundaries.

Type
Systematics & Morphology
Copyright
© Entomological Society of Canada 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject Editor: Kevin Floate

References

Agnarsson, I. 2010. The utility of ITS2 in spider phylogenetics: notes on prior work and an example from Anelosimus. Journal of Arachnology, 38: 377382.CrossRefGoogle Scholar
Aubry, K.B., Statham, M.J., Sacks, B.N., Perrines, J.D., and Wisely, S.M. 2009. Phylogeography of the North American red fox: vicariance in Pleistocene forest refugia. Molecular Ecology, 18: 26682686.CrossRefGoogle ScholarPubMed
Avise, J.C. 2004. Molecular markers, natural history, and evolution, 2nd edition. Sinauer Associates, Sunderland, Massachusetts, United States of America.Google Scholar
Barrett, R.D.H. and Hebert, P.D.N. 2005. Identifying spiders through DNA barcodes. Canadian Journal of Zoology, 83: 481491.CrossRefGoogle Scholar
Bond, J.E. and Stockman, A.K. 2008. An integrative method for delimiting cohesion species: finding the population-species interface in a group of California trapdoor spiders with extreme genetic divergence and geographic structuring. Systematic Biology, 57: 628646.CrossRefGoogle Scholar
Brown, J.M., Hedtke, S.M., Lemmon, A.R., and Lemmon, E.M. 2010. When trees grow too long: investigating the causes of highly inaccurate Bayesian branch-length estimates. Systematic Biology, 59: 145161.CrossRefGoogle ScholarPubMed
Brunsfield, S.J., Sullivan, J., Soltis, D.E., and Soltis, P.S. 2001. Comparative phylogeography of northwestern North America: a synthesis. In Integrating ecology and evolution in a spatial context. Edited by J. Silvertown and J. Antonovics. Blackwell Science, Oxford, United Kingdom. Pp. 319339.Google Scholar
Byun, S.A., Koop, B.E., and Reimchen, T.E. 1997. North American black bear mtDNA phylogeography: implications for morphology and the Haida Gwaii glacial refugium controversy. Evolution, 51: 16471653.Google ScholarPubMed
Chang, J., Dong, D., and Zhou, K. 2007. Incongruous nuclear and mitochondrial phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China. Molecular Phylogenetics and Evolution, 42: 104121.CrossRefGoogle ScholarPubMed
Cognato, A.I. 2006. Standard percent DNA sequence difference for insects does not predict species boundaries. Journal of Economic Entomology, 99: 10371045.CrossRefGoogle Scholar
Correa-Ramirez, M.M., Jimenez, M.L., and Garcia-De Leon, F.J. 2010. Testing species boundaries in Pardosa sierra (Araneae: Lycosidae) using female morphology and COI mtDNA. Journal of Arachnology, 38: 538554.CrossRefGoogle Scholar
Crawford, R., Sugg, P.M., and Edwards, J.S. 1995. Spider arrival and primary establishment on terrain depopulated by volcanic eruption at Mount, St. Helens, Washington. American Midland Naturalist, 133: 6075.CrossRefGoogle Scholar
Crews, S.C., Putnte-Rolon, A.R., Rutstein, E., and Gillespie, R.G. 2009. A comparison of populations of island and adjacent mainland species of Caribbean Selenops (Araneae: Selenopidae) spiders. Molecular Phylogenetics and Evolution, 54: 970983.CrossRefGoogle ScholarPubMed
Demboski, J.R., Stone, K.D., and Cook, J.A. 1999. Further perspectives on the Haida Gwaii glacial refugium. Evolution, 53: 20082012.CrossRefGoogle ScholarPubMed
Dondale, C.D. 1999. Revision of the groenlandica subgroup of the genus Pardosa (Araneae, Lycosidae). Journal of Arachnology, 27: 435448.Google Scholar
Dondale, C.D. and Redner, J.H. 1990. The insects and arachnids of Canada, Part 17. The wolf spiders, nurseryweb spiders, and lynx spiders of Canada and Alaska, Araneae: Lycosidae, Pisauridae, and Oxyopidae. Publication 1856. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada.Google Scholar
Drummond, A.J., Ho, S.Y.W., Phillips, M.J., and Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. Public Library of Science Biology, 4: 699710.Google ScholarPubMed
Excoffier, L., Laval, G., and Schneider, S. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1: 4750.Google Scholar
Federov, V.B. and Stenseth, N.C. 2002. Multiple glacial refugia in the North American Arctic: inference from phylogeography of the collared lemming (Dicrostonyx groenlandicus). Proceedings of the Royal Society, London, 269: 20712077.CrossRefGoogle Scholar
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17: 368376.CrossRefGoogle ScholarPubMed
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294299.Google ScholarPubMed
Funk, D.J. and Omland, K.E. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics, 34: 97423.CrossRefGoogle Scholar
Greenstone, M.H., Morgan, C.E., and Hultsch, A. 1987. Ballooning spiders in Missouri, USA and New South Wales, Australia: family and mass distributions. The Journal of Arachnology, 15: 163170.Google Scholar
Hasegawa, M., Kishino, H., and Yano, T. 1985. Dating of human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22: 160174.CrossRefGoogle ScholarPubMed
Hedin, M.C. 1997. Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus). Molecular Biology and Evolution, 14: 309324.CrossRefGoogle ScholarPubMed
Hedin, M.C. and Maddison, W.P. 2001. A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae, Salticidae). Molecular Phylogenetics and Evolution, 18: 386403.CrossRefGoogle ScholarPubMed
Hendrixson, B.E. and Bond, J.E. 2005. Testing species boundaries in the Antrodiaetus unicolor complex (Araneae: Mygalomorphae: Antrodiaetidae): “paraphyly” and cryptic diversity. Molecular Phylgenetics and Evolution, 36: 405416.CrossRefGoogle ScholarPubMed
Henry, C.S., Brooks, S.J., Duelli, P., Johnson, J.B., Wells, M.M., and Mochizuki, A. 2012. Parallel evolution in courtship songs of North American and European green lacewings (Neuroptera: Chrysopidae). Biological Journal of the Linnean Society, 105: 776796.CrossRefGoogle Scholar
Hosseini, R., Keller, M.A., Schmidt, O., and Framenau, V.W. 2007. Molecular identification of wolf spiders (Araneae: Lycosidae) by multiplex polymerase chain reaction. Biological Control, 40: 128135.CrossRefGoogle Scholar
Ji, Y.J., Zhang, D.X., and He, L.J. 2003. Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Molecular Ecology Notes, 3: 581585.CrossRefGoogle Scholar
Kass, R.E. and Raferty, A.E. 1995. Bayes factors. Journal of the American Statistical Association, 90: 773795.CrossRefGoogle Scholar
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111120.CrossRefGoogle ScholarPubMed
Klopfstein, S., Kropf, C., and Quicke, D.L.J. 2010. An evaluation of phylogenetic informativeness profiles and the molecular phylogeny of Diplazontinae (Hymenoptera, Ichneumonidae). Systematic Biology, 59: 226241.CrossRefGoogle ScholarPubMed
Knowles, L.L. and Yang, Y.H. 2008. Resolving species phylogenies of recent evolutionary radiations. Annals of the Missouri Botanical Garden, 95: 224231.CrossRefGoogle Scholar
Kronestedt, T. 1975. Studies on species of Holarctic Pardosa groups (Araneae, Lycosidae). I. Redescriptions of Pardosa albomaculata Emerton and description of two new species from North America, with comments on some taxonomic characters. Zoologica Scripta, 4: 217228.CrossRefGoogle Scholar
Kronestedt, T. 1981. Studies on species of Holarctic Pardosa groups (Araneae, Lycosidae), II. Redescriptions of Pardosa modica (Blackwall), Pardosa labradorensis (Thorell), and Pardosa sinistra (Thorell). Bulletin of the American Museum of Natural History, 170: 111125.Google Scholar
Kronestedt, T. 1986. Studies on species of Holarctic Pardosa groups (Araneae, Lycosidae). III. Redescriptions of Pardosa algens (Kulczyn’ski), P. septentrionalis (Westring), and P. sodalis Holm. Entomologica Scandinavia, 17: 215234.CrossRefGoogle Scholar
Kronestedt, T. 1988. Studies on species of Holarctic Pardosa groups (Araneae, Lycosidae). IV. Redescription of Pardosa tetonensis Gertsch and descriptions of two new species from the western United States. Entomologica Scandinavia, 18: 409424.CrossRefGoogle Scholar
Kronestedt, T. 1993. Studies on species of Holarctic Pardosa groups (Araneae, Lycosidae). V. Redescription of Pardosa wasatchensis Gertsch and description of a new species from Utah. Journal of Arachnology, 21: 175183.Google Scholar
Li, C., Lu, G., and Orti, G. 2008. Optimal data partitioning and a test for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Systematic Biology, 57: 519539.CrossRefGoogle Scholar
Lopez, H., Contreras-Dıaz, H.G., Oromı, P., and Juan, C. 2007. Delimiting species boundaries for endangered Canary Island grasshoppers based on DNA sequence data. Conservation Genetics, 8: 587598.CrossRefGoogle Scholar
Lowrie, D.C. and Dondale, C.D. 1981. A revision of the nigra group of the genus Pardosa in North America (Araneae, Lycosidae). Bulletin of the American Museum of Natural History, 170: 125139.Google Scholar
Maddison, W.P. 1997. Gene trees in species trees. Systematic Biology, 46: 523536.CrossRefGoogle Scholar
Maddison, W.P. and Maddison, D.R. 2009. Mesquite: A modular system for evolutionary analysis, version 2.72. Available from www.mesquiteproject.org [accessed 8 December 2014].Google Scholar
Marshall, D.C. 2010. Cryptic failure of partitioned Bayesian phylogenetic analyses: lost in the land of long trees. Systematic Biology, 59: 108117.CrossRefGoogle ScholarPubMed
Muster, C. and Berendonk, T.U. 2006. Divergence and diversity: lessons from an arctic–alpine distribution (Pardosa saltuaria group, Lycosidae). Molecular Ecology, 15: 29212933.CrossRefGoogle ScholarPubMed
Muster, C., Maddison, W.P., Uhlmann, S., Berendonk, T.U., and Vogler, A.P. 2009. Arctic-alpine distributions – metapopulations on a continental scale? American Naturalist, 173: 313326.CrossRefGoogle ScholarPubMed
Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P., and Nieves-Aldrey, J.L. 2004. Bayesian phylogenetic analysis of combined data. Systematic Biology, 53: 4767.CrossRefGoogle ScholarPubMed
Paquin, P. and Hedin, M. 2004. The power and perils of ‘molecular taxonomy’: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves. Molecular Ecology, 13: 32393255.CrossRefGoogle ScholarPubMed
Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., et al. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55: 595609.CrossRefGoogle ScholarPubMed
Posada, D. and Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817818.CrossRefGoogle ScholarPubMed
Rambaut, A. and Drummond, A.J. 2007. Tracer v1.4. Available from http://tree.bio.ed.ac.uk/software/tracer/ [accessed 27 May 2014].Google Scholar
Robinson, E.A., Blagoev, G.A., Hebert, P.D.N., and Adamowicz, S.J. 2009. Prospects for using DNA barcoding to identify spiders in species-rich genera. ZooKeys, 16: 2746.Google Scholar
Ronquist, F. and Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 15721574.CrossRefGoogle ScholarPubMed
Rosenberg, N.A. 2007. Statistical test for taxonomic distinctiveness from observations of monophyly. Evolution, 61: 317323.CrossRefGoogle ScholarPubMed
Schmidt, B.C. and Sperling, F.A.H. 2008. Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae). Systematic Entomology, 33: 613634.CrossRefGoogle Scholar
Slowik, J. 2011. A morphological and genetic review of the Pardosa groenlandica species complex. MS. thesis. University of Alaska, Fairbanks, Alaska, United States of America.Google Scholar
Slowik, J. and Sikes, D.S. 2013. Removing a specimen’s geographic information results in high identification error in the groenlandica species complex of Pardosa (Araneae: Lycosidae) resulting in synonymization of four species. Journal of Arachnology, 41: 327344.CrossRefGoogle Scholar
Sukumaran, J. and Holder, M.T. 2010. DendroPy: a python library for phylogenetic computing. Bioinformatics, 26: 15691571.CrossRefGoogle ScholarPubMed
Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4, Sinauer Associates, Sunderland, Massachusetts, United States of America.Google Scholar
Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512526.Google ScholarPubMed
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25: 48764882.CrossRefGoogle ScholarPubMed
Vink, C.J. and Patterson, A.M. 2003. Combined molecular and morphological phylogeneitc analysis of the New Zealand wolf spider genus Anoteropsis (Araneae: Lycosidae). Molecular Phylogenetics and Evolution, 28: 576587.CrossRefGoogle Scholar
Vink, C.J., Sirvid, P.J., Malumbres-Olarte, J., Grifths, J.W., Paquin, P., and Paterson, A.M. 2008. Species status and conservation issues of New Zealand’s endemic Latrodectus spider species (Araneae: Theridiidae). Invertebrate Systematics, 22: 589604.CrossRefGoogle Scholar
Vink, C.J., Thomas, S.M., Paquin, P., Hayashi, C.Y., and Hedin, M. 2005. The effects of preservatives and temperatures on arachnid DNA. Invertebrate Systematics, 19: 99104.CrossRefGoogle Scholar
Ward, P.S., Brady, S.G., Fisher, B.L., and Schultz, T.R. 2010. Phylogeny and biogeography of Dolichoderine ants: effects of data partitioning and relic taxa. Systematic Biology, 59: 342362.CrossRefGoogle Scholar
Whitworth, T.L., Dawson, R.D., Magalon, H., and Baudry, E. 2007. DNA barcoding cannot reliably identify species of the blowfly genus Protocalluphora (Diptera: Calliphoridae). Proceedings of the Royal Society, Biology, 274: 17311739.CrossRefGoogle ScholarPubMed
Yang, Z. and Rannala, B. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences, 107: 92649269.CrossRefGoogle ScholarPubMed
Zwickl, D.J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation. The University of Texas at Austin, Texas, United States of America. Available from http://repositories.lib.utexas.edu/handle/2152/2666 [accessed 8 December 2014].Google Scholar