Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T00:15:04.993Z Has data issue: false hasContentIssue false

New trap for emergent Megaplatypus mutatus

Published online by Cambridge University Press:  02 April 2012

Pablo Gatti Liguori*
Affiliation:
Centro de Investigaciones de Plagas e Insecticidas (CITEFA-CONICET) J.-B. De LaSalle 4397 (B1603ALO), Buenos Aires, Argentina
Eduardo Zerba
Affiliation:
Centro de Investigaciones de Plagas e Insecticidas (CITEFA-CONICET) J.-B. De LaSalle 4397 (B1603ALO), Buenos Aires, Argentina
Paola Gonzalez Audino
Affiliation:
Centro de Investigaciones de Plagas e Insecticidas (CITEFA-CONICET) J.-B. De LaSalle 4397 (B1603ALO), Buenos Aires, Argentina
*
1 Corresponding author (e-mail: pgatti@citefa.gov.ar).

Abstract

Megaplatypus mutatus (= Platypus mutatus) (Chapuis), an ambrosia beetle (Coleoptera: Platypodidae) native to South America, is a forest pest that attacks live standing trees, affecting commercial poplar and other broadleaf plantations. Traditionally, single-chambered emergence traps have been used to collect live beetles for field and laboratory studies. However, the lack of separation in these chambers results in antagonistic interactions between individuals. Wounded M. mutatus are incapable of successful reproduction and are of little value in physiological and behavioral experiments. We introduce a new, multiple-chambered trap that isolates individual insects until collection, thus increasing the number of uninjured and fully functional insects available for physiological and behavioral experiments.

Résumé

Megaplatypus mutatus (= Platypus mutatus) (Chapuis), un scolyte ambrosia (Coleoptera: Platypodidae) indigène d’Amérique du Sud, est un ravageur qui attaque les arbres vivants sur pied, ce qui affecte les plantations commerciales de peupliers et d’autres essences à feuilles larges. Pour les études de terrain et de laboratoire, on récolte généralement les insectes vivants à l’aide de pièges d’émergence comprenant une seule cellule. Cependant, l’absence de séparation dans ces cellules permet des interactions agonistes entre les individus. Les M. mutatus blessés sont incapables de se reproduire avec succès et sont de peu d’utilité pour les expériences de physiologie et de comportement. Dans notre étude, nous avons mis au point un nouveau piège à cellules multiples qui isole les individus jusqu’au moment de la récolte, ce qui fournit un nombre plus élevé d’insectes sains et complètement fonctionnels pour les expériences physiologiques et comportementales.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bascialli, M.E., Giménez, R.A., Etiennot, A.E., and Toscani, H. 1996. Manejo de la población de Platypus sulcatus Chapuis, durante tres años en la región del Delta del Río Paraná mediante control químico. Investigatión Agraria Sistemas de Recursos Forestales, 5: 129140.Google Scholar
Beaver, R.A. 1988. Biological studies on ambrosia beetles of the Seychelles (Col., Scolytidae and Platypodidae). Journal of Applied Entomology, 105: 6273.CrossRefGoogle Scholar
Borden, J.H., and Stokkink, E. 1973. Laboratory investigation of secondary attraction in Gnathotrichus sulcatus (Coleoptera: Scolytidae). Canadian Journal of Zoology, 51: 469473.CrossRefGoogle Scholar
Byers, J.A., Lanne, B.S., and Löfqvist, J. 1989. Host tree unsuitability recognized by pine shoot beetles in flight. Experientia, 45: 489492.CrossRefGoogle Scholar
Byers, J.A., Zhang, Q.H., and Bigersson, G. 2004. Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors. Naturwissenchaften, 91: 215219.CrossRefGoogle Scholar
Girardi, G.S., Giménez, R., and Braga, M.R. 2006. Occurrence of Platypus mutatus Chapuis (Coleoptera: Platypodidae) in a brazilwood experimental plantation in southeastern Brazil. Neotropical Entomology, 35: 864867.CrossRefGoogle Scholar
Gonzalez Audino, P., Villaverde, R., Alfaro, R., and Zerba, E. 2005. Identification of volatile emissions from Platypus mutatus (= sulcatus) (Coleoptera: Platypodidae) and their behavioral activity. Journal of Economic Entomology, 98: 15061509CrossRefGoogle ScholarPubMed
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomologist, 115: 299302.CrossRefGoogle Scholar
Liu, Y.B., and McLean, J. 1993. Observations on the biology of the ambrosia beetle Gnathotrichus retusus (Le Conte) (Coloepotera: Scolytidae). The Canadian Entomologist, 125: 7383.CrossRefGoogle Scholar
MacConnell, J.G., Borden, J.H., Silverstein, R.M., and Stokkink, E. 1977. Isolation and tentative identification of lineatin, a pheromone from the frass of Trypodendron lineatum (Coleoptera: Scolytidae). Journal of Chemical Ecology, 3: 549561.CrossRefGoogle Scholar
McIntosh, R.L., and McLean, J.A. 1992. A life stage development index for Trypodendron lineatum (Oliv.) in a spruce boom on the Alberni Canal, Vancouver Island. Journal of the Entomological Society of British Columbia, 89: 4347.Google Scholar
McIntosh, R.L., and McLean, J.A. 1997. Developmental threshold for the striped ambrosia beetle Trypodendrum lineatum: a first estimate. Journal of the Entomological Society of British Columbia, 94: 1926.Google Scholar
Santoro, H.F. 1963. Bioecología de Platypus sulcatus Chapuis (Coleoptera: Platypodidae). Revista de Investigaciones Forestales, 4: 4779.Google Scholar
Santoro, H.F. 1967. Nuevo antecedente sobre la lucha manual contra Platypus sulcatus Chapuis (Coleoptera: Platypodidae). IDIA Revista de Información sobre Investigación y Desarrollo Agropecuario Suplemento Forestal, 4: 7074.Google Scholar
Wood, S.L. 1993. Revision of the genera of Platypodidae (Coleoptera). Great Basin Naturalist, 53: 259281.CrossRefGoogle Scholar
Ytsma, G. 1989. Colonization of southern beech by Platypus caviceps (Coleoptera: Platypodidae). Journal of Chemical Ecology, 15: 11711176.CrossRefGoogle Scholar