Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-17T20:33:46.542Z Has data issue: false hasContentIssue false

Oviposition response of spruce budworm (Lepidoptera: Tortricidae) to host terpenes and green-leaf volatiles

Published online by Cambridge University Press:  02 April 2012

Gary G. Grant*
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street E, Sault Ste. Marie, Ontario, Canada P6A 2E5
Jian Guo
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street E, Sault Ste. Marie, Ontario, Canada P6A 2E5
Linda MacDonald
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street E, Sault Ste. Marie, Ontario, Canada P6A 2E5
Melanie D. Coppens
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street E, Sault Ste. Marie, Ontario, Canada P6A 2E5
*
1 Corresponding author (e-mail: ggrant@nrcan.gc.ca).

Abstract

A dual-choice behavioral bioassay and gas chromatography – electroantennogram detection (GC–EAD) were used to determine the effect of host terpenes and nonhost green-leaf volatiles (GLVs) on the oviposition preference of the spruce budworm, Choristoneura fumiferana (Clemens). Some emphasis was placed on assessing the ability of females to distinguish between enantiomers of chiral monoterpenes because (+)-α-pinene but not (–)-α-pinene or (±)-α-pinene had been shown previously to promote oviposition. Headspace volatiles from white spruce, Picea glauca (Moench) Voss (Pinaceae), and balsam fir, Abies balsamea (L.) Mill. (Pinaceae), were sampled using solid-phase microextraction and identified by gas chromatography – mass spectrometry with the aid of a chiral column. Females deposited significantly more egg masses on filter paper substrate treated with host monoterpenes than on controls. Contrary to expectation, substrates treated with several GLVs were also preferred over the controls. None of the GLVs or terpenes was deterrent. Females showed no significant ability in either the behavioral or the GC–EAD bioassays to distinguish between enantiomers of selected chiral monoterpenes, including α-pinene, in contrast to earlier findings. We conclude that host terpenes serve as general rather than host-specific oviposition stimuli for spruce budworm.

Résumé

Un bioessai comportemental à deux choix et une technique GC–EAD (chromatographie en phase gazeuse et détection électro-antenno-graphique) nous ont servi à déterminer les effets des terpènes de l'hôte et des substances volatiles des feuilles vertes (GLV) ne provenant pas de l'hôte sur les préférences de ponte de la tordeuse des bourgeons de l'épinette, Choristoneura fumiferana (Clemens). Nous avons, de façon particulière, déterminé la capacité des femelles à distinguer entre les énantiomères des monoterpènes chiraux, puisqu'on a démontré antérieurement que la (+)-α-pinène favorise la ponte, ce qui n'est pas le cas de la (–)-α-pinène, ni de la (±)-α-pinène. Nous avons échantillonné à l'aide de SPME (micro-extraction en phase solide) et identifié par chromatographie en phase gazeuse et par spectrométrie de masse à l'aide d'une colonne chirale les substances volatiles dans l'espace supérieur immédiat émises par l'épinette blanche, Picea glauca (Moench) Voss (Pinaceae) et le sapin baumier, Abies balsamea (L.) Mill. (Pinaceae). Les femelles pondent significativement plus de masses d'oeufs sur un substrat de papier filtre traité avec les monoterpènes de l'hôte que sur les témoins. Contrairement à notre prévision, les substrats traités avec différents GLV sont aussi préférés aux témoins. Aucun des GLV et des terpènes n'est inhibiteur. Contrairement à des résultats antérieurs, les femelles ne montrent aucune aptitude significative, tant dans les tests comportementaux que dans les tests GC–EAD, à distinguer entre les énantiomères des monoterpènes chiraux sélectionnés, y compris de la α-pinène. Nous concluons que les terpènes de l'hôte servent de stimulus généraux de la ponte chez la tordeuse de bourgeons de l'épinette, plutôt que de stimulus spécifiques à l'hôte.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asaro, C., Sullivan, B.T., Dalusky, M.J., and Berisford, C.W. 2004. Volatiles associated with preferred and nonpreferred hosts of the Nantucket pine tip moth, Rhyacionia frustrana. Journal of Chemical Ecology, 30: 977990.CrossRefGoogle ScholarPubMed
Banga, N., Albert, P.J., Kapoor, N.N., and McNeil, J.N. 2003. Structure, distribution, and innervation of sensilla on the ovipositor of the spruce budworm, Choristoneura fumiferana, and evidence of a gusatory function for type II sensilla. Canadian Journal of Zoology, 81: 20322037.CrossRefGoogle Scholar
Byers, J.A., Zhang, Q.-H., and Birgersson, G. 2000. Strategies of a bark beetle, Pityogenes bidentatus, in an olfactory landscape. Naturwissenschaften, 87: 503507.CrossRefGoogle Scholar
Dickens, J.C., Billings, R.F., and Payne, T. 1992. Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Experientia, 48: 523524.CrossRefGoogle Scholar
Fatzinger, C.W., and Merkel, E.P. 1985. Oviposition and feeding preferences of the southern pine coneworm (Lepidoptera: Pyralidae) for different host-plant materials and observations on monoterpenes as an oviposition stimulant. Journal of Chemical Ecology, 11: 689699.CrossRefGoogle ScholarPubMed
Grant, G.G. 2006. Foliage architecture explains spruce budworm (Lepidoptera: Tortricidae) oviposition preference for white spruce over balsam fir. The Canadian Entomologist, 138: 198204.CrossRefGoogle Scholar
Grant, G.G., and Langevin, D. 1994. Oviposition responses of four Choristoneura (Lepidoptera: Tortricidae) species to chemical and physical stimuli associated with host and nonhost foliage. Environmental Entomology, 23: 447456.CrossRefGoogle Scholar
Grant, G.G., and Langevin, D. 1995. Oviposition deterrence, stimulation, and effect on clutch size of Choristoneura (Lepidoptera: Tortricidae) species by extract fractions of host and nonhost foliage. Environmental Entomology, 24: 16561663.CrossRefGoogle Scholar
Grisdale, D. 1984. A laboratory method for mass rearing the eastern spruce budworm, Choristoneura fumiferana. In Advances and challenges in insect rearing. Edited by King, E.G. and Leppla, N.C.. US Department of Agriculture, New Orleans, Louisiana. pp. 223231.Google Scholar
Hanula, J.L., Berisford, C.W., and DeBarr, G.L. 1985. Monoterpene oviposition stimulants of Dioryctria amatella in volatiles from fusiform rust galls and second-year loblolly pine cones. Journal of Chemical Ecology, 11: 943952.CrossRefGoogle Scholar
Hull, C.D., Cunningham, J.P., Moore, C.J., Zalucki, M.P., and Cribb, B.W. 2004. Discrepancy between antennal and behavioral responses for enantiomers of α-pinene: electrophysiology and behavior of Helicoverpa armigera (Lepidoptera). Journal of Chemical Ecology, 30: 20712084.CrossRefGoogle ScholarPubMed
Hunt, R.S., and von Rudloff, E. 1974. Chemosystematic studies in the genus Abies. I. Leaf and twig oil analysis of alpine and balsam firs. Canadian Journal of Botany, 52: 477487.CrossRefGoogle Scholar
Jactel, H., Kleinhentz, M., Marpeau-Bezard, A., Marion-Poll, F., Menassieu, P., and Burban, C. 1996. Terpene variations in maritime pine constitutive oleoresin related to host tree selection by Dioryctria sylvestrella Ratz (Lepidoptera: Pyralidae). Journal of Chemical Ecology, 22: 10371050.CrossRefGoogle Scholar
Leather, S.R. 1987. Pine monoterpenes stimulate oviposition in the pine beauty moth, Panolis flammea. Entomologia Experimentalis et Applicata, 43: 295303.CrossRefGoogle Scholar
Leather, S.R. 1996. Resistance to foliage-feeding insects in conifers: implications for pest management. Integrated Pest Management Reviews, 1: 163180.CrossRefGoogle Scholar
Meagher, R.L. 2002. Trapping noctuid moths with synthetic floral volatile lures. Entomologia Experimentalis et Applicata, 103: 219226.CrossRefGoogle Scholar
Mozuraitis, R., Stranden, M., Ramirez, M.I., Borg-Karlson, A.-K., and Mustaparta, H. 2002. (—)-Germacrene D receptor increases attraction and oviposition by the tobacco budworm moth, Heliothis virescens. Chemical Senses, 27: 505509.CrossRefGoogle ScholarPubMed
Poland, T.M., and Haack, R.A. 2000. Pine shoot beetle, Tomicus piniperda (Col., Scolytidae), response to common green leaf volatiles. Journal of Applied Entomology, 124: 6369.CrossRefGoogle Scholar
Renwick, J.A.A., and Radke, C.D. 1982. Ovipositional choice and larval survival of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Environmental Entomology, 11: 503505.CrossRefGoogle Scholar
Rivet, M.-P., and Albert, P.J. 1990. Oviposition behavior in the spruce budworm, Choristoneura fumiferana (Clem.), (Lepidoptera: Tortricidae). Journal of Insect Behavior, 3: 395400.CrossRefGoogle Scholar
Rocchini, L.A., Lindgren, B.S., and Bennett, R.G. 2000. Effects of resin flow and monoterpene composition on susceptibility of lodgepole pine to attack by the Douglas-fir pitch moth, Synanthedon novaroensis (Lep. Sesiidae). Journal of Applied Entomology, 124: 8792.CrossRefGoogle Scholar
Sadof, C.S., and Grant, G.G. 1997. Monoterpene composition of Pinus sylvestris varieties resistant and susceptible to Dioryctria zimmermani. Journal of Chemical Ecology, 23: 19171927.CrossRefGoogle Scholar
Sanders, C.J., and Lucuik, G.S. 1975. Effects of photoperiod and size on flight activity and oviposition in the eastern spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist, 107: 12891299.CrossRefGoogle Scholar
Shu, S., Grant, G.G., Langevin, D., Lombardo, D., and Macdonald, L. 1997. Oviposition and electro-antennogram responses of Dioryctria abietivorella (Lepidoptera: Pyralidae) elicited by host monoterpenes and their enantiomers. Journal of Chemical Ecology, 23: 3550.CrossRefGoogle Scholar
Städler, E. 1974. Host plant stimuli affecting oviposition of eastern spruce budworm. Entomologia Experimentalis et Applicata, 17: 176188.CrossRefGoogle Scholar
Stranden, M., Liblikas, I., König, W.A., Almaas, T.J., Borg-Karlson, A.-K., and Mustaparta, H. 2003. (—)-Germacrene D receptor neurones in three species of heliothine moths: structure–activity relationships. Journal of Comparative Physiology A, 189: 563577.CrossRefGoogle ScholarPubMed
Syed, Z., Guerin, P.M., and Baltensweiler, W. 2003. Antennal response of two host races of the larch budmoth, Zeiraphera diniana, to larch and cembran pine volatiles. Journal of Chemical Ecology, 29: 16911708.CrossRefGoogle Scholar
Tiberi, R., Niccoli, A., Curini, M., Epifano, F., Marcotullio, M.C., and Rosati, O. 1999. The role of the monoterpene composition in Pinus spp. needles in host selection by the pine processionary caterpillar, Thaumetopoea pityocampa. Phytoparisitica, 27: 263272.CrossRefGoogle Scholar
Turgeon, J.J., Brokerhoff, E.G., Lombardo, D.A., Macdonald, L., and Grant, G.G. 1998. Differences in composition and release rate of volatiles emitted by black spruce seed cones sampled in situ versus ex situ. Canadian Journal of Forest Research, 28: 311316.CrossRefGoogle Scholar
Valterova, I., Sjodin, K., Vrkoc, J., and Nordin, T. 1995. Contents and enantiomeric composition of monoterpene hydrocarbons in xylem oleoresin from four Pinus species growing in Cuba. Comparison of trees attacked and unattacked by Dioryctria horneana. Biochemical Systematics and Ecology, 23: 15.CrossRefGoogle Scholar
Wilson, L.F., and Bean, J.L. 1963. Site of spruce budworm egg masses on their preferred hosts in the Lake States. Journal of Economic Entomology, 56: 574578.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical analysis. 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
Zhang, Q.-H., Schlyter, F., Battisti, A., Birgersson, G., and Anderson, P. 2003. Electrophysiological responses of Thaumatopoea pityocampa females to host volatiles: implications for host selection of active and inactive terpenes. Anzeiger für Schädlingskunde, 76: 103107.CrossRefGoogle Scholar