Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T11:56:29.426Z Has data issue: false hasContentIssue false

Predator release from invertebrate generalists does not explain geometrid moth (Lepidoptera: Geometridae) outbreaks at high altitudes

Published online by Cambridge University Press:  28 January 2013

Tino Schott*
Affiliation:
Department of Arctic and Marine Biology, University of Tromsø, N-9037 Tromsø, Norway
Lauri Kapari
Affiliation:
Department of Arctic and Marine Biology, University of Tromsø, N-9037 Tromsø, Norway
Snorre B. Hagen
Affiliation:
Bioforsk Soil and Environment, Svanhovd, Norwegian Institute for Agricultural and Environmental Research, N-9925 Svanvik, Norway
Ole Petter L. Vindstad
Affiliation:
Department of Arctic and Marine Biology, University of Tromsø, N-9037 Tromsø, Norway
Jane U. Jepsen
Affiliation:
Norwegian Institute for Nature Research, Fram Centre, N-9296 Tromsø, Norway
Rolf A. Ims
Affiliation:
Department of Arctic and Marine Biology, University of Tromsø, N-9037 Tromsø, Norway
*
1Correspondence author (e-mail: Tino.Schott@uit.no).

Abstract

Outbreaks of geometrid defoliators in subarctic birch forest in Fennoscandia often occur at high altitude in a distinct zone along the tree line. At the same time, moth larvae may not have an impact on the forest at lower altitude. Directly adjacent outbreak and nonoutbreak areas offer unique opportunities for studying the underlying mechanisms of outbreaks. Within two altitudinal gradients in coastal northern Norway, we investigated whether altitudinal outbreaks might be caused by release from pupal predation by ground-dwelling invertebrates such as harvestmen (Opiliones), spiders (Araneae), rove beetles (Coleoptera: Staphylinidae), carabid beetles (Coleoptera: Carabidae), and other beetles (Coleoptera). We predicted a consistently higher abundance of such generalist predators at low versus high altitudes. Our results did not support this prediction. There was no consistent altitudinal variation in the abundance of predators that could be related to zonal moth outbreaks in the birch forest slopes. In addition, none of the predator groups investigated showed any numerical response to a distinct outbreak of winter moth that took place during the course of the study. Consequently, localised moth outbreaks at the altitudinal tree line in northern Norway cannot be explained by the release from pupal predation by the predator groups examined here.

Résumé

Des éclosions massives de géométridés défoliateurs dans les forêts subarctiques de bouleaux de Fennoscandie se produisent souvent à haute altitude dans une zone distincte le long de la ligne des arbres. Au même moment, les larves des lépidoptères peuvent être sans impact sur la forêt à une altitude inférieure. Ces zones directement adjacentes avec et sans éclosions représentent des occasions uniques pour étudier les mécanismes sous-jacents aux éclosions. Sur deux gradients d'altitude sur la côte nord de la Norvège, nous avons vérifié si les éclosions saisonnières pouvaient être dues à la réduction de la prédation des nymphes par les invertébrés vivant au sol, tels que les opilions (Opiliones), les araignées (Araneae), les staphylins (Coleoptera: Staphylinidae), les carabes (Coleoptera: Carabidae) et les autres coléoptères (Coleoptera). Nous avons prédit des densités toujours plus élevées de ces prédateurs généralistes aux basses altitudes qu'aux altitudes plus élevées. Nos résultats n'appuient pas cette prédiction. Il n'existe pas de variation régulière de l'abondance des prédateurs en fonction de l'altitude qui pourrait être mise en relation avec les éclosions dans des zones particulières le long des pentes des forêts de bouleaux. De plus, aucun des groupes de prédateurs étudiés n'a montré de réponse numérique à une éclosion bien marquée de l'arpenteuse tardive survenue au cours de l’étude. En conséquence, il n'est pas possible d'expliquer les éclosions localisées de lépidoptères au niveau de la ligne des arbres dans le nord de la Norvège par la réduction de la prédation des nymphes par les groupes de prédateurs examinés dans notre étude.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, J.W. 1974. Study of arthropod predation of Pieris rapae (L.) using serological and exclusion techniques. Journal of Applied Ecology, 11: 419425.CrossRefGoogle Scholar
Baltensweiler, W. 1993. Why the larch bud moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the 1st time since 1850. Oecologia, 94: 6266.CrossRefGoogle Scholar
Baltensweiler, W. 2008. Tracing the influence of larch bud moth insect outbreaks and weather conditions on larch tree-ring growth in Engadine (Switzerland). Oikos, 117: 161172.CrossRefGoogle Scholar
Bjørnstad, O.N., Ims, R.A., Lambin, X. 1999. Spatial population dynamics: analysing patterns and processes of population synchrony. Trends in Ecology & Evolution, 14: 427432.CrossRefGoogle Scholar
Frank, J.H. 1967. Insect predators of pupal stage of winter moth Operophtera brumata (L.) (Lepidoptera – Hydriomenidea). Journal of Animal Ecology, 36: 375389.CrossRefGoogle Scholar
Hagen, S.B., Ims, R.A., Yoccoz, N.G. 2003. Density-dependent melanism in sub-arctic populations of winter moth larvae (Operophtera brumata). Ecological Entomology, 28: 659665.CrossRefGoogle Scholar
Hagen, S.B., Jepsen, J.U., Ims, R.A., Yoccoz, N.G. 2007. Shifting altitudinal distribution of outbreak zones of winter moth Operophtera brumata in sub-arctic birch forest: a response to recent climate warming? Ecography, 30: 299307.Google Scholar
Hågvar, S. 1976. Altitudinal zonation of the invertebrate fauna on branches of birch Betula pubescens. Norwegian Journal of Entomology, 23: 6174.Google Scholar
Hansen, N.M., Ims, R.A., Hagen, S.B. 2009. No impact of pupal predation on the altitudinal distribution of autumnal moth and winter moth (Lepidoptera: Geometridae) in sub-Arctic birch forest. Environmental Entomology, 38: 627632.CrossRefGoogle Scholar
Hansson, L.Henttonen, H. 1988. Rodent dynamics as community processes. Trends in Ecology & Evolution, 3: 195200.CrossRefGoogle ScholarPubMed
Hengxiao, G., McMillin, J.D., Wagner, M.R., Zhou, J., Xu, X. 1999. Altitudinal variation in foliar chemistry and anatomy of yunnan pine, Pinus yunnanensis, and pine sawfly (Hym., Diprionidae) performance. Journal of Applied Entomology, 123: 465471.CrossRefGoogle Scholar
Horgan, F.G. 2005. Predatory hypogaeic beetles are attracted to buried winter moth (Lepidoptera: Geometridae) pupae: evidence using a new trap design. The Coleopterists Bulletin, 59: 4146.CrossRefGoogle Scholar
Hunter, M.D., Watt, A.D., Docherty, M. 1991. Outbreaks of the winter moth on Sitka spruce in Scotland are not influenced by nutrient deficiencies of trees, tree budburst, or pupal predation. Oecologica, 86: 6269.CrossRefGoogle ScholarPubMed
Ims, R.A., Yoccoz, N.G., Hagen, S.B. 2004. Do sub-Arctic winter moth populations in coastal birch forest exhibit spatially synchronous dynamics? Journal of Animal Ecology, 73: 11291136.CrossRefGoogle Scholar
Jepsen, J.U., Hagen, S.B., Karlsen, S.R., Ims, R.A. 2009. Phase-dependent outbreak dynamics of geometrid moth linked to host plant phenology. Proceedings of the Royal Society B: Biological Sciences, 276: 41194128.CrossRefGoogle ScholarPubMed
Jepsen, J.U., Kapari, L., Hagen, S.B., Schott, T., Vindstad, O.P.L., Nilssen, A.C., et al. 2011. Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Global Change Biology, 17: 20712083.CrossRefGoogle Scholar
Johnson, D.M., Buentgen, U., Frank, D.C., Kausrud, K., Haynes, K.J., Liebhold, A.M., et al. 2010. Climatic warming disrupts recurrent Alpine insect outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 107: 2057620581.CrossRefGoogle ScholarPubMed
Kamata, N. 2002. Outbreaks of forest defoliating insects in Japan, 1950–2000. Bulletin of Entomological Research, 92: 109117.CrossRefGoogle ScholarPubMed
Kayes, L.J.Tinker, D.B. 2012. Forest structure and regeneration following a mountain pine beetle epidemic in southeastern Wyoming. Forest Ecology and Management, 263: 5766.CrossRefGoogle Scholar
Kharuk, V.I., Ranson, K.J., Fedotova, E.V. 2007. Spatial pattern of Siberian silkmoth outbreak and taiga mortality. Scandinavian Journal of Forest Research, 22: 531536.CrossRefGoogle Scholar
Klemola, T., Tanhuanpää, M., Korpimäki, E., Ruohomäki, K. 2002. Specialist and generalist natural enemies as an explanation for geographical gradients in population cycles of northern herbivores. Oikos, 99: 8394.CrossRefGoogle Scholar
Maron, J.L., Harrison, S., Greaves, M. 2001. Origin of an insect outbreak: escape in space or time from natural enemies? Oecologica, 126: 595602.CrossRefGoogle ScholarPubMed
Mjaaseth, R.R., Hagen, S.B., Yoccoz, N.G., Ims, R.A. 2005. Phenology and abundance in relation to climatic variation in a sub-arctic insect herbivore-mountain birch system. Oecologia, 145: 5365.CrossRefGoogle Scholar
Nyffeler, M. 1999. Prey selection of spiders in the field. Journal of Arachnology, 27: 317324.Google Scholar
R Development Core Team 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Raymond, B., Vanbergen, A., Watt, A., Hartley, S.E., Cory, J.S., Hails, R.S. 2002. Escape from pupal predation as a potential cause of outbreaks of the winter moth, Operophtera brumata. Oikos, 98: 219228.CrossRefGoogle Scholar
Ruohomäki, K., Virtanen, T., Kaitaniemi, P., Tammaru, T. 1997. Old mountain birches at high altitudes are prone to outbreaks of Epirrita autumnata (Lepidoptera: Geometridae). Environmental Entomology, 26: 10961104.CrossRefGoogle Scholar
Schott, T., Hagen, S.B., Ims, R.A., Yoccoz, N.G. 2010. Are population outbreaks in sub-arctic geometrids terminated by larval parasitoids? Journal of Animal Ecology, 79: 701708.CrossRefGoogle ScholarPubMed
Tanhuanpää, M., Ruohomäki, K., Kaitaniemi, P., Klemola, T. 1999. Different impact of pupal predation on populations of Epirrita autumnata (Lepidoptera; Geometridae) within and outside the outbreak range. Journal of Animal Ecology, 68: 562570.CrossRefGoogle Scholar
Tenow, O. 1972. The outbreaks of Oporinia autumnata Bkh. and Operophtera spp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968. Zoologiska Bidrag från Uppsala, 2 (Suppl. 2), 1107.Google Scholar
Tenow, O.Nilssen, A. 1990. Egg cold hardiness and topoclimatic limitations to outbreaks of Epirrita autumnata in northern Fennoscandia. Journal of Applied Ecology, 27: 723734.CrossRefGoogle Scholar
Turchin, P.Hanski, I. 1997. An empirically based model for latitudinal gradient in vole population dynamics. American Naturalist, 149: 842874.CrossRefGoogle ScholarPubMed
Virtanen, T.Neuvonen, S. 1999. Performance of moth larvae on birch in relation to altitude, climate, host quality and parasitoids. Oecologia, 120: 92101.CrossRefGoogle ScholarPubMed
Virtanen, T., Neuvonen, S., Nikula, A. 1998. Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with a geographical information system: predictions for current climate and warmer climate scenarios. Journal of Applied Ecology, 35: 311322.CrossRefGoogle Scholar