Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-16T08:26:30.915Z Has data issue: false hasContentIssue false

SIMULATING DEVELOPMENT OF IMMATURE HORN FLIES, HAEMATOB1A IRRITANSIRRITANS (L.) (DIPTERA: MUSCIDAE), IN ALBERTA1

Published online by Cambridge University Press:  31 May 2012

T.J. Lysyk
Affiliation:
Agriculture Canada Research Station, PO Box 3000, Main, Lethbridge, Alberta, Canada T1J 4B1

Abstract

Developmental times were determined at constant temperatures for an Alberta population of horn flies, Haematobia irritans irritans (L.). Prepupal (egg and larval) developmental time was determined at seven constant temperatures and ranged from 8.9 days at 20.1°C to 3.5 days at 34.5°C. Prepupal development averaged 44.8% of the preadult (egg, larval, and pupal) developmental time. Preadiilt developmental time was determined at 43 constant temperatures and ranged from 41.6 days at 15°C to 8.4 days at 35°C. The relationship between preadult developmental rate and constant temperature was used in a model to simulate developmental times of horn fly immatures exposed to fluctuating temperatures. The model simulated adult eclosion times well. Deviations of simulated from observed (observed – simulated) mean developmental times averaged 0.4 (SD = 1.3) days, and were less than those found when previously published developmental rate equations were used.

Résumé

La durée du développement a été évaluée à des températures constantes chez une population de Mouches des cornes, Haematobia irritans irritans (L.), de l’Alberta. La durée du développement jusqu’au stade de pupe (oeuf et larve) a été déterminée à sept températures constantes et se situait entre 8,9 jours à 20,1°C et 3,5 jours à 34,5°C. La durée du développement jusqu’au stade prépupe représentait 44,8% du développement préadulte (oeuf, larve et pupe). La durée du développement jusqu’au stade adulte a été évaluée à 43 températures constantes et se situait entre 41,6 jours à 15°C et 8,4 jours à 35°C. La relation entre la vitesse du développement préadulte et la température constante a été utilisée dans un modèle conçu pour simuler les durées de développement des stades immatures exposés à des fluctuations de température. Le modèle permettait de simuler fidèlement la durée jusqu’à l’émergence des adultes. Les écarts entre les durées moyennes de développement simulées et observées étaient en moyenne de 0,4 jours (écart type = 1,3 jours) et étaient inférieurs à ceux trouvés en utilisant des équations de taux de développement publiées antérieurement.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Axtell, R.C., and Stinner, R.E.. 1990. Computer simulation modelling of fly management. pp. 265–291 in Rutz, D.A., and Patterson, R.S. (Eds.), Biocontrol of Arthropods Affecting Livestock and Poultry. Westview, Boulder, CO.Google Scholar
Berry, I.L., Kunz, S.E., and Foerster, K.W.. 1977. A dynamic model of the physiological development of immature stable flies. Annals of the Entomological Society of America 70: 173176.CrossRefGoogle Scholar
Depner, K.R. 1961. The effect of temperature on development and diapause of the horn fly, Siphona irritans (L.) (Diptera: Muscidae). The Canadian Entomologist 93: 855859.CrossRefGoogle Scholar
Larsen, E.B., and Thomsen, M.. 1940. The influence of temperature on the development of some species of Diptera. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 104: 175.Google Scholar
Lysyk, T.J. 1991. Use of life history parameters to improve a rearing method for horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae) on bovine hosts. The Canadian Entomologist 123: 11991207.CrossRefGoogle Scholar
Lysyk, T.J., and Axtell, R.C.. 1987. A simulation model of house fly (Diptera: Muscidae) development in poultry manure. The Canadian Entomologist 119: 427437.CrossRefGoogle Scholar
March, P.A., and Bay, D.E.. 1983. Vertical distribution of horn fly (Diptera: Muscidae) larvae in response to manure pat temperature gradients. Environmental Entomology 12: 11591165.CrossRefGoogle Scholar
Miller, J.A. 1977. A computer simulation of populations of the horn fly, Haematobia irritans (L.). Ph.D. thesis, Texas A&M University, College Station, TX. 118 pp.Google Scholar
Moon, R.D. 1983. Simulating developmental time of preadult face flies (Diptera: Muscidae) from air temperature records. Environmental Entomology 12: 943948.CrossRefGoogle Scholar
Palmer, W.A., Bay, D.E., and Sharpe, P.J.H.. 1981. Influence of temperature on the development and survival of the immature stages of the horn fly, Haematobia irritans irritans (L.). Protection Ecology 3: 299309.Google Scholar
SAS Institute Inc. 1989. SAS/STAT User's Guide, Version 6, Vol. 2. SAS Institute Inc., Cary, NC. 846 pp.Google Scholar
Stinner, R.E., Gutierrez, A.P., and Butler, G.D.. 1974. An algorithm for temperature-dependent growth rate simulation. The Canadian Entomologist 106: 519524.CrossRefGoogle Scholar
Thomas, G.D., Berry, I.L., and Morgan, C.E.. 1974. Field developmental time of non-diapausing horn flies in Missouri. Environmental Entomology 3: 151155.CrossRefGoogle Scholar
Vogt, W.G., Walker, J.M., and Runko, S.. 1990. Estimation of development times for immature stages of the bush fly, Musca vetustissima Walker (Diptera: Muscidae), and their simulation from air temperature and solar radiation records. Bulletin of Entomological Research 80: 7378.CrossRefGoogle Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., and Coulson, R.N.. 1984. Modelling distributions of insect development time: A literature review and application of the Weibull function. Annals of the Entomological Society of America 77: 475487.CrossRefGoogle Scholar