Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T19:05:59.454Z Has data issue: false hasContentIssue false

VARIABILITY AMONG APHID CLONES OF RHOPALOSIPHUM PADI L. AND SITOBION AVENAE FABR. (HOMOPTERA: APHIDIDAE) IN TRANSMISSION OF THREE PAV ISOLATES OF BARLEY YELLOW DWARF VIRUSES

Published online by Cambridge University Press:  31 May 2012

Jing-Quan Guo
Affiliation:
Station de Zoologie, INRA, Centre de Versailles, Route de St-Cyr, 78026 Versailles cédex, France
Jean-Pierre Moreau
Affiliation:
Station de Zoologie, INRA, Centre de Versailles, Route de St-Cyr, 78026 Versailles cédex, France
Hervé Lapierre
Affiliation:
Station de Pathologie Végétale, INRA, Centre de Versailles, Route de St-Cyr, 78026 Versailles cédex, France

Abstract

Variability in vectoring efficiency among six clones of Rhopalosiphum padi L. and five clones of Sitobion avenae Fabr. in transmission of three French PAV isolates (PAV-RG, PAV-2t, and PAV-13t) of barley yellow dwarf viruses (BYDVs) on seedlings of barley (Hordeum vulgare L.) cv. Plaisant was determined. All the clones could transmit these three isolates, but their vectoring efficiency was significantly different: 91% and 56% transmission efficiencies were obtained from the most efficient clones (Rp-M and Sa-R1) but only 21% and 9% from the least efficient clones (Rp-R26 and Sa-V) with 5-day acquisition and inoculation access periods (AAP, IAP). A significant difference in overall transmission between apterous adults and winged aphids of the tested clones was also found. In most cases, apterous adults were more efficient than were winged aphids. The overall transmission efficiency of apterous adults was 1.5 and 1.7 times that of winged ones for R. padi and S. avenae, respectively. The transmissibility of PAV-RG and PAV-2t isolates was similar within each of the tested aphid clones, but that of the PAV-13t isolate differed, particularly for the poorly efficient vector clones of S. avenae. Temperature could significantly influence the vectoring efficiency of the tested clones of R. padi, but the influence was greater on Rp-R26. High temperature (25 °C) facilitated more transmission than did low temperature (14 °C), and high temperature for AAP played a more important role than it did for IAP.

Résumé

La variabilité de la capacité vectrice de deux espèces de pucerons, en utilisant six clones de Rhopalosiphum padi L. et cinq clones de Sitobion avenae Fabr. collectés dans diverses localités françaises, a été démontrée par des essais de transmission en conditions contrôlées de trois isolats du PAV (PAV-RG, PAV-2t et PAV-13t) de la jaunisse nanisante de l’orge à des plantules d’Hordeum vulgare L. cultivar Plaisant. Tous les clones ont pu transmettre ces isolats, mais avec des capacités vectrices significativement différentes. Avec les clones les plus performants, Rp-M et Sa-R1, on a obtenu 91% et 56% d’efficacité de transmission des trois isolats. A l’opposé, les clones les moins efficaces, Rp-R26 et Sa-V, n’ont transmis qu’à 21% et 9% respectivement. On a constaté, entre adultes ailés et aptères, des différences significatives de transmission des isolats. Dans la plupart des cas, les aptères se sont montrés plus efficaces que les ailés. Globalement, et pour les espèces de R. padi et S. avenae respectivement, le taux de transmission par les aptères a été de 1.5 et 1.7 fois supérieur à celui des ailés. La transmissibilité des isolats PAV-RG et PAV-2t a été semblable avec chacun des clones testés, mais l’isolt’ PAV-13t a été parfois moins transmis, surtout par les clones moins efficaces de S. avenae. La température a joué un rôle significatif dans la capacité vectrice des clones Rp-M et Rp-R26 de R. padi, mais sont influence s’est montrée encore plus nette pour le clone Rp-R26. Une température de 25 °C a conduit à un taux de transmission plus important qu’à 14 °C. Cet effet a été plus net sur la période d’acquisition que sur la période d’inoculation.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beuve, M., and Lapierre, H.. 1992. Resistance to RPV barley yellow dwarf virus in the genus Bromus. Canadian Journal of Botany 70: 3237.CrossRefGoogle Scholar
Chalhoub, A.B., Sarrafi, A., Beuve, M., and Lapierre, H.. 1994. Differential interaction between PAV-like isolates of barley yellow dwarf virus and barley (Hordeum vulgare L.). Journal of Phytopathology 142: 189198.CrossRefGoogle Scholar
Comas, J., Pons, X., Albajes, B., and Plumb, R.T.. 1993. The role of maize in the epidemiology of barley yellow dwarf virus in northeast Spain. Phytopathologische Zeitschrift 138: 244248.CrossRefGoogle Scholar
Creamer, R., and Falk, W.B.. 1990. Direct detection of transcapsidated barley yellow dwarf luteoviruses in doubly infected plants. Journal of General Virology 71: 211217.CrossRefGoogle Scholar
Foxe, M.J., and Rochow, W.F.. 1975. Importance of virus source leaves in vector specificity of barley yellow dwarf virus. Phytopathology 65: 11241129.CrossRefGoogle Scholar
Gildow, F.E. 1987. Virus-membrane interactions involved in circulative transmission of luteoviruses by aphids. Current Topics in Vector Research 4: 93120.Google Scholar
Gildow, F.E. 1993. Evidence for receptor-mediated endocytosis regulating luteovirus acquisition by aphids. Phytopathology 83: 270277.CrossRefGoogle Scholar
Gildow, E.F., and Gray, M.S.. 1993. The aphid salivary gland basal lamina as a selective barrier associated with vector-specific transmission of barley yellow dwarf luteoviruses. Phytopathology 83: 12931302.CrossRefGoogle Scholar
Gildow, F.E., and Rochow, W.F.. 1980. Role of accessory salivary glands in aphid transmission of barley yellow dwarf virus. Virology 104: 97108.CrossRefGoogle ScholarPubMed
Gildow, F.E., and Rochow, W.F.. 1983. Barley yellow dwarf in California: Vector competence and luteovirus identification. Plant Disease 67: 140143.CrossRefGoogle Scholar
Gill, C.C. 1967. Transmission of barley yellow dwarf virus isolates from Manitoba by five species of aphids. Phytopathology 57: 713718.Google Scholar
Gill, C.C. 1969. Cyclical transmissibility of barley yellow dwarf virus from oats with increasing age of infection. Phytopathology 59: 2328.Google Scholar
Gill, C.C. 1970. Aphid nymphs transmit an isolate of barley yellow dwarf virus more efficiently than do adults. Phytopathology 60: 17471752.CrossRefGoogle Scholar
Gray, M.S., Power, A.G., Smith, D.M., Seaman, A.J., and Alman, N.S.. 1991. Aphid transmission of barley yellow dwarf virus: Acquisition access periods and virus concentration requirements. Phytopathology 81: 539545.CrossRefGoogle Scholar
Hu, J.S., Rochow, W.F., Palukaitis, P., and Dietert, R.R.. 1988. Phenotypic mixing: Mechanism of dependent transmission for two related isolates of barley yellow dwarf virus. Phytopathology 78: 13261330.CrossRefGoogle Scholar
Irwin, M.E., and Thresh, J.M.. 1990. Epidemiology of barley yellow dwarf: A study in ecological complexity. Annual Review of Phytopathology 28: 393424.CrossRefGoogle Scholar
Jensen, S.C. 1969. Occurrence of virus particles in the phloem tissue of BYDV-infected barley. Virology 38: 8391.CrossRefGoogle ScholarPubMed
Johnson, R.A., and Rochow, W.F.. 1972. An isolate of barley yellow dwarf virus transmitted specifically by Schizaphis graminum. Phytopathology 62: 921925.CrossRefGoogle Scholar
Peiffer, M.L., Gildow, F.E., and Gray, S.M.. 1993. Effect of the salivary gland basal lamina on transmission efficiency of barley yellow dwarf virus (BYDV) by aphids. Phytopathology 83: 1403. [Abstract.]Google Scholar
Pereira, A.M., Lister, R.M., Barbara, D.J., and Shaner, G.E.. 1989. Relative transmissibility of barley yellow dwarf virus from sources with differing virus contents. Phytopathology 79: 15801589.CrossRefGoogle Scholar
Robert, Y. 1971. Epidémiologie de l'enroulement de la pomme de terre: Capacité vectrice de stades et de formes des pucerons Aulacorthum solani Kltb., Macrosiphum euphorbiae Thomas et Myzus persicae Sulz. Potato Research 14: 130139.CrossRefGoogle Scholar
Rochow, W.F. 1969. Biological properties of four isolates of barley yellow dwarf virus. Phytopathology 59: 15801589.Google ScholarPubMed
Rochow, W.F. 1982. Dependent transmission by aphids of barley yellow dwarf luteoviruses from mixed infections. Phytopathology 72: 302305.Google Scholar
Rochow, W.F., and Eastop, F.V.. 1966. Variation within Rhopalosiphum padi and transmission of barley yellow dwarf virus by clones of four aphid species. Virology 30: 286296.CrossRefGoogle ScholarPubMed
Saksena, K.N., Singh, S.R., and Sill, W.H. Jr., 1964. Transmission of barley yellow dwarf virus by four biotypes of the corn leaf aphid, Rhopalosiphum maidis. Journal of Economic Entomology 57: 569571.CrossRefGoogle Scholar
Syller, J. 1994. The effects of temperature on the availability and acquisition of potato leafroll luteovirus by Myzus persicae. Annals of Applied Biology 125: 141145.CrossRefGoogle Scholar
Zhou, G.-H. and Rochow, W.F.. 1984. Differences among five stages of Schizaphis graminum in transmission of a barley yellow dwarf luteovirus. Phytopathology 74: 14501453.CrossRefGoogle Scholar