Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-30T05:47:27.474Z Has data issue: false hasContentIssue false

Virus loads in Douglas-fir tussock moth larvae infected with the Orgyia pseudotsugata nucleopolyhedrovirus

Published online by Cambridge University Press:  02 April 2012

Christine M. Thorne
Affiliation:
Department of Biology, University of Victoria, P.O. Box 3020, Station CSC, Victoria, British Columbia, Canada V8W 3N5
David B. Levin*
Affiliation:
Department of Biology, University of Victoria, P.O. Box 3020, Station CSC, Victoria, British Columbia, Canada V8W 3N5
Imre S. Otvos
Affiliation:
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
Nicholas Conder
Affiliation:
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
*
2Corresponding author (e-mail: levindb@cc.umanitoba.ca).

Abstract

We studied Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) infections in larvae of the Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough (Lepidoptera: Lymantriidae), to determine the quantity of OpMNPV particles that result in mortality. We observed a bimodal pattern of mortality in Douglas-fir tussock moth larvae that ingested diet plugs contaminated with 9.5 OpMNPV occlusion bodies. A mortality peak (80% of total mortality observed) occurred between day 5 and day 11 post ingestion, and a second, smaller mortality peak coincided with the onset of pupation. Virus loads, defined as the number of OpMNPV occlusion bodies in each sample of tested larval homogenate, were quantified using an indirect ELISA method. Virus loads that resulted in mortality were significantly greater than those quantified in larvae that were sacrificed during and after the peak mortality wave (P < 0.004 and P < 0.0001, Mann–Whitney U two-tailed rank test and SPSS®, respectively). This is the first known attempt to differentiate the quantity of virus produced during lethal infections from the virus loads in larvae that survive infection.

Résumé

Nous avons étudié les infections au nucléopolyhédrovirus à capsides multiples d’Orgyia pseudotsugata (OpMNPV) chez des chenilles à houppes du Douglas, Orgyia pseudotsugata McDunnough (Lepidoptera: Lymantriidae), pour déterminer le nombre de particules d’OpMNPV nécessaires pour provoquer la mort. Il y a un patron bimodal de mortalité chez les chenilles de houppes du Douglas qui ingèrent des pastilles alimentaires contaminées avec 9,5 corps d’occlusion d’OpMNPV. Il se produit un pic de mortalité (80 % de la mortalité observée) entre les jours 5 et 11 après l’ingestion et un second pic plus petit qui coïncide avec le début de la nymphose. Les charges virales, définies comme le nombre de corps d’occlusion d’OPMNPV par échantillon d’homogénat de larves évalué, ont pu être quantifiées à l’aide d’une méthode ELISA indirecte. Les charges virales qui causent la mort sont significativement plus grandes que les charges virales mesurées chez des larves qui ont été sacrifiées durant et après la vague de mortalité maximale (P < 0,004 et P < 0,0001, test bilatéral de classement de U de Mann–Whitney et SPSS®, respectivement). Il s’agit de la première tentative connue pour différencier les quantités de virus produites durant les infections létales des charges virales présentes chez les chenilles qui survivent à l’infection.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I., Taylor, P., Wegwitz, E., and Brown, R.G. 1987. Douglas-fir tussock moth damage in British Columbia. Forestry Chronicle, 63: 351355.CrossRefGoogle Scholar
Anderson, R.M., and May, R.M. 1981. The population dynamics of microparasites and their invertebrate hosts. Proceedings of the Royal Society of London Series B: Biological Science, 291: 451524.Google Scholar
Boots, M. 1999. A general host–pathogen model with free-living infective stages and differing rates of uptake of the infective stages by infected and susceptible hosts. Research in Population Ecology, 41: 189194.CrossRefGoogle Scholar
Boots, M., and Norman, R. 2000. Sublethal infection and the population dynamics of host–microparasite interactions. Journal of Animal Ecology, 69: 517524.CrossRefGoogle Scholar
Burden, J.P., Nixon, C.P., Hodgkinson, A.E., Possee, R.D., Sait, S.M., King, L.A., and Hails, R.S. 2003. Covert infections as a mechanism for longterm persistence of baculoviruses. Ecological Letters, 6: 524531.CrossRefGoogle Scholar
Cooper, D., Cory, J., Theilmann, D., and Myers, J. 2003. Nucleopolyhedrovirus of forest and western tent caterpillars: cross infectivity and evidence for activation of latent virus infection in high-density field populations. Ecological Entomology, 28: 4150.CrossRefGoogle Scholar
Duan, L., and Otvos, I.S. 2001. Influence of larval age and virus concentration on mortality and sublethal effects of a nucleopolyhedrovirus on the western spruce budworm (Lepidoptera: Tortricidae). Environmental Entomology, 30: 136146.CrossRefGoogle Scholar
Evenden, J., and Jost, E.J. 1947. Tussock moth control, North Idaho 1947. Sponsored by Potlatch Timber Protective Association, Idaho State Forestry Department, U.S. Department of Agriculture, Forest Service, Bureau of Entomology and Plant Quarantine.Google Scholar
Fuxa, J.R. 1987. Ecological considerations for the use of entomopathogens in IPM. Annual Review of Entomology, 32: 225251.CrossRefGoogle Scholar
Ginzberg, L.R., and Taneyhill, D.E. 1994. Population cycles of forest Lepidoptera: maternal effects hypothesis. Journal of Animal Ecology, 63: 7992.CrossRefGoogle Scholar
Goulson, D., and Cory, J. 1995. Sublethal effects of baculovirus in cabbage moth, Mamestra brassicae. Biological Control, 5: 361367.CrossRefGoogle Scholar
Harris, J.W.E., Dawson, A.F., and Brown, R.G. 1985. The Douglas-fir tussock moth in British Columbia, 1916–1984. Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia. Information Report BC-X-268.Google Scholar
Hochberg, M. 1989. The potential role of pathogens in biological control. Nature (London), 337: 262265.CrossRefGoogle ScholarPubMed
Hughes, D.S., Possee, R.D., and King, L.A. 1993. Activation and detection of a latent baculovirus resembling Mamestra brassicae nuclear polyhedrosis virus in M. brassicae insects. Virology, 194: 608615.CrossRefGoogle ScholarPubMed
Hughes, D.S., Possee, R.D., and King, L.A. 1997. Evidence for the presence of a low-level, persistent baculovirus infection of Mamestra brassicae insects. Journal of General Virology, 78: 18011805.CrossRefGoogle ScholarPubMed
Jakubowska, A., van Oers, M.M., Otvos, I.S., and Vlak, J.M. 2007. Phylogenetic analysis of Orgyia pseudotsugata single-nucleocapsid nucleopolyhedrovirus. Virologica Sinica, 22: 257265.CrossRefGoogle Scholar
Jehle, J.A., Blissard, G.W., Bonning, B.C., Cory, J.S., Herniou, E.A., Rohrman, G.F., Theilmann, D.A., Theim, S.M., and Vlak, J.M. 2006. On the classification and nomenclature of baculoviruses: a proposal for revision. Archives of Virology, 151: 12571266.CrossRefGoogle ScholarPubMed
Kaupp, W.J., and Ebling, P.M. 1990. Response of third, fifth and sixth instar spruce budworm, Choristonera fumiferana (Clem.), larvae to nucleopolyhedrosis virus. The Canadian Entomologist, 122: 10371038.CrossRefGoogle Scholar
Keddie, B.A., Aponte, G.W., and Volkman, L.E. 1989. The pathways of infection of Autographa californica nuclear polyhedrosis-virus in an insect host. Science (Washington D.C.), 243: 17281730.CrossRefGoogle Scholar
Kukan, B. 1999. Vertical transmission of nucleopolyhedrovirus in insects. Journal of Invertebrate Pathology, 74: 103111.CrossRefGoogle ScholarPubMed
Laitinen, A.L., Otvos, I.S., and Levin, D.B. 1996. Genotypic variation among wild isolates of Orgyia pseudotsugata (Lepidoptera: Lymantriidae) nuclear polyhedrosis virus. Journal of Economic Entomology, 89: 640647.CrossRefGoogle Scholar
Mason, R.R., Scott, D.W., Loewen, M.D., and Paul, H.G. 1998. Recurrent outbreak of the Douglas-fir tussock moth in the Malheur forest: a case history. General Technical Report GTR PNW-402. USDA Forest Service, Pacific Northwest Research Station, Portland, Oregon.Google Scholar
Moscardi, F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annual Review of Entomology, 44: 257289.CrossRefGoogle ScholarPubMed
Murray, K.D., Shields, K.S., Burand, J.P., and Elkinton, J.S. 1991. The effect of gypsy moth metamorphosis on the development of nuclear polyhedrosis virus infection. Journal of Invertebrate Pathology, 57: 352361.CrossRefGoogle Scholar
Myers, J.H. 1988. Can a general hypothesis explain population cycles of forest Lepidoptera? Advances in Ecology Research, 18: 179242.CrossRefGoogle Scholar
Myers, J.H., and Kukan, B. 1995. Changes in the fecundity of tent caterpillars: a correlated character of disease resistance or sublethal effect of disease? Oecologia, 103: 475480.CrossRefGoogle ScholarPubMed
Myers, J.H., Malakar, R., and Cory, J. 2000. Sublethal nucleopolyhedrovirus infection effects on female pupal weight, egg mass size, and vertical transmission in gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology, 29: 12681272.CrossRefGoogle Scholar
Otvos, I.S., Cunningham, J.C., and Friskie, L.M. 1987. Aerial application of nuclear polyhedrosis virus against Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough) (Lepidoptera: Lymantriidae): I. Impact in the year of application. The Canadian Entomologist, 119: 697706.CrossRefGoogle Scholar
Otvos, I.S., Cunningham, J.C., MacLaughlan, L., Hall, P., and Conder, N. 1999. The development and operational use of a management system for control of the Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera:Lymantriidae), populations at preoutbreak levels. In Proceedings: Population Dynamics, Impacts, and Integrated Management of Forest Defoliating Insects. Edited by McManus, M.L. and Liehhold, A.M. General Technical Report NE-27. USDA Forest Service, Radnor, Pennsylvania. pp. 143154.Google Scholar
Patil, U.R., Savanurmath, C.J., Mathad, S.B., Aralaguppi, P.I., and Ingalhalli, S.S. 1989. Effects of nuclear polyhedrosis virus on the growth, development and reproduction in surviving generations of the armyworm Mythimna (Pseudaletia) seperata (Walker). Journal of Applied Entomology, 108: 527532.CrossRefGoogle Scholar
Perelle, A.H., and Harper, J.D. 1986. An evaluation of the impact of sublethal dosages of nuclear polyhedrosis virus on larvae on pupae, adults and adult progeny of the fall army worm, Spodoptera frugiperda (Lepidoptera: Lasiocampidae). Environmental Entomology, 23: 864869.Google Scholar
Reed, C., Otvos, I.S., Reardon, R., Ragenovich, I., and Williams, H.L. 2003. Effects of long-term storage on the stability of OpMNPV DNA contained in TM Biocontrol-1. Journal of Invertebrate Pathology, 84: 104113.CrossRefGoogle ScholarPubMed
Régnière, J. 1984. Vertical transmission of diseases and population dynamics of insects with discrete generations: a model. Journal of Theoretical Biology, 107: 287301.CrossRefGoogle Scholar
Rohrmann, G.F., Martignoni, M.E., and Beaudreau, G.S. 1982. DNA sequence homology between Autographa californica and Orgyia pseudotsugata nuclear polyhedrosis viruses. Journal of General Virology, 62: 137143.CrossRefGoogle Scholar
Rothman, L., and Myers, J. 1996. Debilitating effects of viral diseases on host Lepidoptera. Journal of Invertebrate Pathology, 67: 110.CrossRefGoogle Scholar
Sait, S.M., Begon, M., and Thompson, D.J. 1994. The effects of a sublethal baculovirus infection in the Indian meal moth, Plodia interpunctella. Journal of Animal Ecology, 63: 541550.CrossRefGoogle Scholar
Shepherd, R.F., Otvos, I.S., Chorney, R.J., and Cunningham, J.C. 1984. Pest management of Douglas-fir tussock moth (Lepidoptera: Lymantriidae): prevention of an outbreak through early treatment with a nuclear polyhedrosis virus by ground and aerial applications. The Canadian Entomologist, 116: 15331542.CrossRefGoogle Scholar
Stairs, G. 1972. Pathogenic microorganisms in the regulation of forest insect populations. Annual Review of Entomology, 17: 355372.CrossRefGoogle Scholar
Steinhaus, E.A. 1951. Report on the diagnoses of diseased insects 1944–1950. Hilgardia, 20: 629678.CrossRefGoogle Scholar
Stelzer, R.F. 1979. How to determine the incidence of virus in egg masses. In Douglas-fir tussock moth handbook. Agriculture Handbook No. 548. USDA, Washington D.C.Google Scholar
Stoszek, K.J., and Mika, P.G. 1978. Population ecology. Outbreaks, sites, and stands. In The Douglas-fir tussock moth: a synthesis. Edited by Brookes, M.H., Stark, R.W., and Campbell, R.W. USDA Technical Bulletin 1585, Washington, D.C. pp. 5659.Google Scholar
Tanada, Y., and Fuxa, J.R. 1987. The pathogen population. In Epizootiology of insect diseases. Edited by Fuxa, J.R. and Tanada, Y.. John Wiley and Sons, New York. pp. 113158.Google Scholar
Thompson, C.G., and Peterson, L.J. 1978. Rearing the Douglas-fir tussock moth. Agriculture Handbook No. 520. Combined Forestry Pest Research and Development Program, USDA, Washington, D.C.Google Scholar
Thorne, C.M., Otvos, I.S., Conder, N., and Levin, D.B. 2007 a. Development and evaluation of methods to detect nucleopolyhedroviruses in larvae of the Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough). Applied and Environmental Microbiology, 73: 11011106.CrossRefGoogle ScholarPubMed
Thorne, C.M., Otvos, I.S., Conder, N., and Levin, D.B. 2007 b. Development of a dipstick immunoassay to detect nucleopolyhedroviruses in Douglas-fir tussock moth larvae. Journal of Virological Methods, 146: 188195.CrossRefGoogle ScholarPubMed
Washburn, J.O., Kirkpatrick, B.A., and Volkman, L.E. 1996. Insect protection against viruses. Nature (London), 383: 767.CrossRefGoogle Scholar
Wickman, B.E. 1978. Tree mortality and top-kill related to defoliation by the Douglas-fir tussock moth in the Blue Mountains outbreak. Research Paper PNW-233. USDA Forest Service, Washington D.C.Google Scholar
Williams, H.L., and Otvos, I.S. 2005. Genotypic variation and presence of rare genotypes among Douglas-fir tussock moth multicapsid nucleopolyhedrovirus (OpMNPV) isolates in British Columbia. Journal of Invertebrate Pathology, 88: 190200.CrossRefGoogle ScholarPubMed