Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T04:07:42.748Z Has data issue: false hasContentIssue false

Nonlinear Multipoint Boundary Value Problems for Second Order Differential Equations

Published online by Cambridge University Press:  20 November 2018

Tadeusz Jankowski*
Affiliation:
Department of Differential Equations, Gdansk University of Technology, 80–952 Gdańsk, Poland e-mail: tjank@mifgate.mif.pg.gda.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we shall discuss nonlinear multipoint boundary value problems for second order differential equations when deviating arguments depend on the unknown solution. Sufficient conditions under which such problems have extremal and quasi-solutions are given. The problem of when a unique solution exists is also investigated. To obtain existence results, a monotone iterative technique is used. Two examples are added to verify theoretical results.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Ahmad, B. and Nieto, J. J., Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. 69(2008), no. 10, 32913298. doi:10.1016/j.na.2007.09.018Google Scholar
[2] Chen, L. and Sun, J., Nonlinear boundary value problem of first order impulsive functional differential equations. J. Math. Anal. Appl. 318(2006), no. 2, 726741. doi:10.1016/j.jmaa.2005.08.012Google Scholar
[3] Ding, W. and Han, M., Periodic boundary value problem for the second order impulsive functional differential equations. Appl. Math. Comput. 155(2004), no. 3, 709726. doi:10.1016/S0096-3003(03)00811-7Google Scholar
[4] Ding, W., Han, M., and Mi, J., Periodic boundary value problem for second-order impulsive functional differential equations. Comput. Math. Appl. 50(2005), no. 2-3, 491507. doi:10.1016/j.camwa.2005.03.010Google Scholar
[5] Han, F. and Wang, Q., Existence of multiple positive periodic solutions for differential equation with state-dependent delays. J. Math. Anal. Appl. 324(2006), no. 2, 908920. doi:10.1016/j.jmaa.2005.12.050Google Scholar
[6] Hartung, F., Linearized stability in periodic functional differential equations with state-dependent delays. J. Comput. Appl. Math. 174(2005), no. 2, 201211. doi:10.1016/j.cam.2004.04.006Google Scholar
[7] Hartung, F., Linearized stability for a class of neutral functional differential equations with state-dependent delays. Nonlinear Anal. 69(2008), no. 5-6, 16291643. doi:10.1016/j.na.2007.07.004Google Scholar
[8] Hartung, F., Krisztin, T., Walther, H.-O., and Wu, J., Functional differential equations with state–dependent delays: theory and applications. In: Handbook of Differential Equations: Ordinary Differential Equations, Vol. 3, Elsevier/North-Holland, Amsterdam, 2006, pp. 435545.Google Scholar
[9] Islam, M. N. and Raffoul, Y. N., Periodic solutions of neutral nonlinear system of differential equations with functional delay. J. Math. Anal. Appl. 331(2007), no. 2, 11751186. doi:10.1016/j.jmaa.2006.09.030Google Scholar
[10] Jankowski, T., Existence of solutions of differential equations with nonlinear multipoint boundary conditions. Comput. Math. Appl. 47(2004), no. 6-7, 10951103. doi:10.1016/S0898-1221(04)90089-2Google Scholar
[11] Jankowski, T., On delay differential equations with nonlinear boundary conditions. Bound. Value Probl. 2005, no. 2, 201214.Google Scholar
[12] Jankowski, T., Advanced differential equations with nonlinear boundary conditions. J. Math. Anal. Appl. 304(2005), no. 2, 490503. doi:10.1016/j.jmaa.2004.09.059Google Scholar
[13] Jankowski, T., First-order impulsive ordinary differential equations with advanced arguments. J. Math. Anal. Appl. 331(2007), no. 1, 112. doi:10.1016/j.jmaa.2006.07.108Google Scholar
[14] Jankowski, T., Nonlinear boundary value problems for second order differential equations with causal operators. J. Math. Anal. Appl. 332(2007), no. 2, 13801392. doi:10.1016/j.jmaa.2006.11.004Google Scholar
[15] Jankowski, T., Existence of solutions for second order impulsive differential equations with deviating arguments. Nonlinear Anal. 67(2007), no. 6, 17641774. doi:10.1016/j.na.2006.08.020Google Scholar
[16] Jankowski, T., Existence of solutions of boundary value problems for differential equations in which deviated arguments depend on the unknown solution. Comput. Math. Appl. 54(2007), no. 3, 357363. doi:10.1016/j.camwa.2007.01.022Google Scholar
[17] Jiang, D. and Wei, J., Monotone method for first- and second-order periodic boundary value problems and periodic solutions of functional differential equations. Nonlinear Anal. 50(2002), no. 7, 885898. doi:10.1016/S0362-546X(01)00782-9Google Scholar
[18] Jiang, D., Nieto, J. J. and Zuo, W., On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations. J. Math. Anal. Appl. 289(2004), no. 2, 691699. doi:10.1016/j.jmaa.2003.09.020Google Scholar
[19] Ladde, G. S., Lakshmikantham, V., and Vatsala, A. S., Monotone Iterative Techniques for Nonlinear Differential Equations., Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics 27. Pitman, Boston, 1985.Google Scholar
[20] Liang, R. and Shen, J., Periodic boundary value problem for the first order impulsive functional differential equations. J. Comput. Appl. Math. 202(2007), no. 2, 498510. doi:10.1016/j.cam.2006.03.017Google Scholar
[21] Nieto, J. J. and Rodríguez-López, R., Remarks on periodic boundary value problems for functional differential equations. J. Comput. Appl. Math. 158(2003), no. 2, 339353. doi:10.1016/S0377-0427(03)00452-7Google Scholar
[22] Nieto, J. J. and Rodríguez-López, R., Monotone method for first-order functional differential equations. Comput. Math. Appl. 52(2006), no. 3-4, 471484. doi:10.1016/j.camwa.2006.01.012Google Scholar
[23] Nieto, J. J. and Rodríguez-López, R., Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J. Math. Anal. Appl. 318(2006), no. 2, 593610. doi:10.1016/j.jmaa.2005.06.014Google Scholar
[24] Raffoul, Y. N., Stability in neutral nonlinear differential equations with functional delays using fixed-point theory. Math. Comput. Modelling 40(2004), no. 7-8, 691700. doi:10.1016/j.mcm.2004.10.001Google Scholar
[25] Walther, H.-O., The solution manifold and C 1 -smoothness of solution operators for differential equations with state dependent delay. J. Differential Equations 195(2003), no. 1, 4665. doi:10.1016/j.jde.2003.07.001Google Scholar