Skip to main content

Tannakian Duality for Affine Homogeneous Spaces

  • Teodor Banica (a1)

Associated with any closed quantum subgroup and any index set I ⊂ {1,…,N} is a certain homogeneous space , called an affine homogeneous space. Using Tannakian duality methods, we discuss the abstract axiomatization of the algebraic manifolds that can appear in this way.

Hide All
[1] Banica, T., Weingarten Integration over noncommutative homogeneous Spaces. Ann. Math. Blaise Pascal 24(2017), no. 2, 195224.
[2] Banica, T. and Collins, B., Integration over compact quantum groups. Publ. Res. Inst. Math. Sei. 43(2007), 277302.
[3] Banica, T. and Goswami, D., Quantum isometries and noncommutative spheres. Comm. Math. Phys. 298(2010), 343356.
[4] Banica, T. and Meszäros, S., Uniqueness resultsfor noncommutative spheres and projeetive Spaces. Illinois J. Math. 59(2015), 219233.
[5] Collins, B. and Matsumoto, S., Weingarten calculus via orthogonality relations: new appücations. ALEA Lat. Am. J. Probab. Math. Stat. 14(2017), no. 1, 631656.
[6] Collins, B. and Sniady, P., Integration with respect to the Haar measure on the unitary, orthogonal and symplectic group. Comm. Math. Phys. 264(2006), 773795.
[7] Goswami, D., Quantum group oj isometries in classical and noncommutative geometry. Comm. Math. Phys. 285(2009), 141160.
[8] Goswami, D., Existence and examples of quantum isometry groups for a class of compact metric Spaces. Adv. Math. 280(2015), 340359. http://dx.doi.Org/10.1016/j.aim.2015.03.024
[9] Malacarne, S., Woronowicz's Tannaka-Krein duality andfree orthogonal quantum groups. Math. Scand. 122(2018), 151160.
[10] Raum, S., Isomorphisms andfusion rules of orthogonal free quantum groups and their complexifications. Proc. Amer. Math. Soc. 140(2012), 32073218.
[11] Wang, S., Free produets of compact quantum groups. Comm. Math. Phys. 167(1995), 671692.
[12] Weingarten, D., Asymptotic behavior of group Integrals in the limit of infinite rank. J. Mathematical Phys. 19(1978), 9991001. http://dx.doi.Org/10.1063/1.523807
[13] Woronowicz, S. L., Compact matrixpseudogroups. Comm. Math. Phys. 111(1987), 613665. http://dx.doi.Org/10.1007/BF01219077
[14] Woronowicz, S. L., Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups. Invent. Math. 93(1988), 3576.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed