Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T12:21:43.679Z Has data issue: false hasContentIssue false

Effect of Yangxin Huoxue Jiedu recipe on inflammatory factors and oxidative stress on viral myocarditis in children

Published online by Cambridge University Press:  12 March 2024

Hengrui Hao
Affiliation:
Department of Pediatrics, Xingtai People’s Hospital, Hebei, China
Meixia Ji
Affiliation:
Department of Ultrasound, Xingtai People’s Hospital, Hebei, China
Kuilong Zhou
Affiliation:
Department of Internal Medicine, Xingtai People’s Hospital, Hebei, China
Yunxia Zhang
Affiliation:
Department of Pediatrics, Xingtai People’s Hospital, Hebei, China
Gaoyin Zhang
Affiliation:
Department of Pediatrics, Xingtai People’s Hospital, Hebei, China
Lianying Ruan*
Affiliation:
Pediatric Intensive Care Unit, Xingtai People’s Hospital, Hebei, China
*
Corresponding author: L. Ruan; Email: ruanlianyingpicu@163.com

Abstract

Objective:

This observation purposed to investigate the effect of the Yangxin Huoxue Jiedu formula on children with viral myocarditis and its effect on inflammatory factors and oxidative response.

Materials and methods:

A total of 121 children with viral myocarditis were randomly divided into two groups, namely the control group (N = 60) and the traditional Chinese medicine group (N = 61). The control group was mainly treated with routine therapy, while the traditional Chinese medicine group was treated with Yangxin Huoxue Jiedu recipes based on the control group. The creatine kinase, creatine kinase myocardial isoenzyme, aspartate aminotransferase, lactic dehydrogenase, hydroxybutyrate dehydrogenase, cardiac troponin I, brain natriuretic peptide, interleukin-6, interleukin-8, and tumour necrosis factor-alpha, superoxide dismutase and malondialdehyde in viral myocarditis patients were tested to estimate the myocardial function, inflammation, and oxidative situation.

Results:

After Yangxin Huoxue Jiedu treatment, 15 cases were recovered, 20 were excellent, and 21 were effective, which had a significant difference from the control group. The concentration of creatine kinase, creatine kinase myocardial isoenzyme, aspartate aminotransferase, lactic dehydrogenase, hydroxybutyrate dehydrogenase, cardiac troponin I and brain natriuretic peptide was decreased in the traditional Chinese medicine group. The levels of interleukin-6, interleukin-8, and tumour necrosis factor-alpha in the traditional Chinese medicine group were significantly lower than those in the control group. Superoxide dismutase was higher and malondialdehyde was lower than those in the control group.

Conclusion:

The use of Yangxin Huoxue Jiedu in the treatment of viral myocarditis has a definite clinical effect, which could improve myocardial function, reduce body inflammation, and promote oxidative recovery.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Putschoegl, A, Auerbach, S. Diagnosis, evaluation, and treatment of myocarditis in children. Pediatr Clin North America 2020; 67: 855874.CrossRefGoogle ScholarPubMed
Narovlyanskaya, O, Winokur, EJ. Viral Myocarditis. Dimens Crit Care Nurs 2020, 39:7580.Google Scholar
Zhao, L, Fu, Z. Roles of host immunity in viral myocarditis and dilated cardiomyopathy. J Immunol Res 2018; 2018: 5301548–12.Google Scholar
Adeboye, A, Alkhatib, D, Butt, A, Yedlapati, N, Garg, N. A review of the role of imaging modalities in the evaluation of viral myocarditis with a special focus on COVID-19-related myocarditis. Diagnostics 2022; 12: 549.CrossRefGoogle ScholarPubMed
Lin, L, Zhang, M, Yan, R, et al. Inhibition of Drp1 attenuates mitochondrial damage and myocardial injury in Coxsackievirus B3 induced myocarditis. Biochem Biophys Res Commun 2017; 484: 550556.CrossRefGoogle ScholarPubMed
Tong, R, Jia, T, Shi, R, Yan, F. Inhibition of microRNA-15 protects H9c2 cells against CVB3-induced myocardial injury by targeting NLRX1 to regulate the NLRP3 inflammasome. Cell Mol Biol Lett 2020; 25: 6.CrossRefGoogle ScholarPubMed
Cao, Y, Xu, X, Zhang, P. Advances in the traditional Chinese medicine-based management of viral myocarditis. Cell Biochem Biophys 2015; 73: 237243.CrossRefGoogle ScholarPubMed
Wang, L, Xiang, L, Piao, S, et al. The efficacy and safety of chinese medicine fufang zhenzhu tiaozhi capsule (FTZ) in the treatment of diabetic coronary heart disease: study protocol for multicenter, randomized, double-blind, placebo-controlled clinical trial. Diabetes Metab Syndr Obes 2021; 14: 26512659.CrossRefGoogle ScholarPubMed
Zeng, C, Yuan, Z, Pan, X, et al. Efficacy of traditional Chinese medicine, Maxingshigan-Weijing in the management of COVID-19 patients with severe acute respiratory syndrome: a structured summary of a study protocol for a randomized controlled trial. Trials 2020; 21: 1029.Google Scholar
Wang, Y, Wang, Q, Li, C, et al. A review of Chinese herbal medicine for the treatment of chronic heart failure. Curr Pharm Des 2017; 23: 51155124.Google ScholarPubMed
Dai, G, Gao, W, Bi, D, et al. Efficacy of traditional chinese medicine in patients with acute myocardial infarction suffering from diabetes mellitus. J Tradit Chin Med = Chung i tsa chih ying wen pan 2018; 38: 412418.Google ScholarPubMed
Lu, LY, Zheng, GQ, Wang, Y. An overview of systematic reviews of shenmai injection for healthcare. Evid Based Complement Alternat Med 2014; 2014: 840650–9.CrossRefGoogle ScholarPubMed
Wei, RL, Cui, X, Xie, YM. [Pharmacoeconomic evaluation of Qidong Yixin oral liquid in treatment of viral myocarditis (Qi-Yin deficiency syndrome) with treeAge pro]. Zhongguo Zhong Yao Za Zhi 2022; 47: 829835.Google Scholar
中华医学会儿科学分会心血管学组, 中华儿科杂志编辑委员会. 病毒性心肌炎诊断标准(修订草案). 中国实用儿科杂志. 2000.Google Scholar
郑筱萸. 中药新药临床研究指导原则: 中药新药临床研究指导原则; 2002.Google Scholar
Caraballo, C, Desai, NR, Mulder, H, et al. Clinical implications of the New York heart association classification. J Am Heart Assoc 2019; 8: e014240.CrossRefGoogle ScholarPubMed
质量 试, 临床,药物,保存,研究者. ⟪药物临床试验质量管理规范⟫ (局令第3号).Google Scholar
Yap, NY, Loo, WS, Zheng, HF, et al. A study protocol for HEalth-related quality of life-intervention in survivors of breast and other cancers experiencing cancer-related fatigue using traditionAL Chinese medicine: the HERBAL trial. Trials 2020; 21: 909.Google Scholar
Wang, Q, Wang, YR, Jia, QY, et al. The efficacy of the traditional Chinese medicine Juanbi pill combined with methotrexate in active rheumatoid arthritis: study protocol for a randomized controlled trial. Trials 2018; 19: 188.Google Scholar
Park, HE, Chon, SB, Na, SH, Lee, H, Choi, SY. A fortified method to screen and detect left ventricular hypertrophy in asymptomatic hypertensive adults: a Korean retrospective, cross-sectional study. Intern J Hypertens 2018; 2018: 6072740–8.Google Scholar
吴仪郑筱萸. 药品不良反应报告和监测管理办法. 中国药物警戒. 2004;6:7-9.Google Scholar
Schultheiss, HP, Baumeier, C, Aleshcheva, G, Bock, CT, Escher, F. Viral myocarditis-from pathophysiology to treatment. J Clin Med 2021; 10: 5240.Google Scholar
Liu, Z, Gao, S, Bu, Y, Zheng, X. Luteolin protects cardiomyocytes cells against lipopolysaccharide-induced apoptosis and inflammatory damage by modulating Nlrp3. Yonsei Med J 2022; 63: 220228.CrossRefGoogle ScholarPubMed
Oberoi, M, Kulkarni, R, Oliver, T. An unusual case of myocarditis, left ventricular thrombus, and embolic stroke caused by mycoplasma pneumoniae. Cureus 2021; 13: e14170.Google ScholarPubMed
Tshimanga, P, Daron, B, Farhat, N, et al. Exercise-triggered chest pain as an isolated symptom of myocarditis in children. Clin Pract 2016; 6: 843.Google Scholar
Frey, T, Arain, N. Pediatric viral myocarditis - a review. S D Med 2018; 71: 2934.Google ScholarPubMed
Yu, K, Zhou, L, Wang, Y, et al. Mechanisms and therapeutic strategies of viral myocarditis targeting autophagy. Front Pharmacol 2022; 13: 843103.CrossRefGoogle ScholarPubMed
Ji, H, Liu, Q, Jiang, H. [Clinical observation on therapeutic effect of xinyikang oral liquid in treating 92 patients of viral myocarditis]. Zhongguo Zhong Xi Yi Jie He Za Zhi 2000; 20: 2224.Google Scholar
Wu, K, Deng, D, Yu, B, et al. Evaluation of the efficacy and safety of Chinese herbal injection combined with trimetazidine for viral myocarditis: a network meta-analysis. Front Pharmacol 2021; 12: 630896.CrossRefGoogle ScholarPubMed
Cao, Y, Liu, Y, Zhang, T, et al. Comparison and analysis on the existing single-herbal strategies against viral myocarditis. Genet Res 2021; 2021: 9952620–12.CrossRefGoogle ScholarPubMed
Wang, Q, Chen, W, Yang, X, et al. Inhibition of miRNA-1-mediated inflammation and autophagy by astragaloside IV improves lipopolysaccharide-induced cardiac dysfunction in rats. J Inflamm Res 2022; 15: 26172629.CrossRefGoogle ScholarPubMed
Hu, YR, Xing, SL, Chen, C, Shen, DZ, Chen, JL. Codonopsis pilosula polysaccharides alleviate Aβ (1-40)-induced PC12 cells energy dysmetabolism via CD38/NAD+ signaling pathway. Curr Alzheimer Res 2021; 18: 208221.Google Scholar
Preeshagul, I, Gharbaran, R, Jeong, KH, et al. Potential biomarkers for predicting outcomes in CABG cardiothoracic surgeries. J Cardiothorac Surg 2013; 8: 176.CrossRefGoogle ScholarPubMed
Maheshwarappa, HM, Rai, AV. Relevance of troponin I elevation among individuals with hypertensive emergency. Indian journal of critical care medicine : peer-reviewed, official publication of Indian society of critical care medicine. Indian J Crit Care Med 2022, 26:767769.CrossRefGoogle Scholar
Maab, H, Mustafa, F, Shabbir, SJ. Cardiovascular impact of COVID-19: an array of presentations. Acta Biomed 2021; 92: e2021021.Google Scholar
Song, F, Kong, F, Zhang, H, Zhou, Y, Li, M. Ulinastatin protects against CVB3-induced acute viral myocarditis through Nrf2 activation. Inflammation 2018; 41: 803810.Google Scholar
Yang, Z, Liu, Y, Wang, L, et al. Traditional Chinese medicine against COVID-19: role of the gut microbiota. Biomed Pharmacother 2022; 149: 112787.Google Scholar
Zhang, Y, Mao, XD, Cao, AL, et al. Astragaloside IV prevents endothelial dysfunction by improving oxidative stress in streptozotocin-induced diabetic mouse aortas. Exp Ther Med 2021; 22: 1197.CrossRefGoogle ScholarPubMed