Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T14:31:45.174Z Has data issue: false hasContentIssue false

Effects of transition programmes to adulthood for adolescents and young adults with CHD: a systematic review with meta-analysis

Published online by Cambridge University Press:  25 March 2024

Bo Ryeong Lee*
Affiliation:
College of Nursing, Research Institute of Nursing Science, Daegu Catholic University, Daegu, Korea
Hyun Young Koo
Affiliation:
College of Nursing, Research Institute of Nursing Science, Daegu Catholic University, Daegu, Korea
Sangmi Lee
Affiliation:
College of Nursing, Dongyang University, Yeongju, Korea
*
Corresponding author: Bo Ryeong Lee; Email: brlee@cu.ac.kr

Abstract

Background:

The increased survival rate among individuals with CHD has sparked interest in their transition to adult healthcare. Although there is a general agreement on the importance of transition interventions, the empirical evidence supporting them is insufficient. Therefore, this study aimed to conduct a systematic review and meta-analysis of transition interventions for adult healthcare in adolescents and young adults.

Methods and results:

A literature search was conducted for studies comparing the quantitative effects of transition interventions with control groups, published up to March 15, 2023, in major databases (CENTRAL, Embase, PubMed, Web of Science, CINAHL, KISS, and KMbase), major clinical trial registries, academic journal sites related to the topic, and grey literature databases. Ten studies involving a total of 1,297 participants were identified. Transition interventions proved effective in enhancing disease-related knowledge (Hedge’s g = 0.89, 95% CI = 0.29−1.48) and self-management (Hedge’s g = 0.67, 95% CI = 0.38−0.95), as well as reducing loss to follow-up (OR = 0.41, 95% CI = 0.22−0.77). The certainty of evidence for the estimated values of each major outcome was low or very low.

Conclusions:

This study supports the implementation of transition interventions by demonstrating that they can improve patients’ disease knowledge and self-management, while also promoting treatment continuity. However, since the available data on transition interventions for adolescents and young adults with CHD remain limited, the widespread adoption of structured transition interventions in the future may alter the conclusions of this study.

Registration:

URL: https://www.crd.york.ac.uk/PROSPERO. Unique identifier: CRD42023399026.

Type
Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gilboa, SM, Devine, OJ, Kucik, JE, et al. Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation 2016; 134: 101109. DOI: 10.1161/CIRCULATIONAHA.115.019307.CrossRefGoogle ScholarPubMed
Moons, P, Skogby, S, Bratt, EL, Zühlke, L, Marelli, A, Goossens, E. Discontinuity of cardiac follow-up in young people with congenital heart disease transitioning to adulthood: a systematic review and meta-analysis. J Am Heart Assoc 2021; 10: e019552. DOI: 10.1161/JAHA.120.019552.CrossRefGoogle ScholarPubMed
Müller, MJ, Norozi, K, Caroline, J, et al. Morbidity and mortality in adults with congenital heart defects in the third and fourth life decade. Clin Res Cardiol 2022; 111: 900911. DOI: 10.1007/s00392-022-01989-1.CrossRefGoogle ScholarPubMed
Wray, J, Frigiola, A, Bull, C. Adult Congenital Heart disease Research Network (ACoRN). Loss to specialist follow-up in congenital heart disease; out of sight, out of mind. Heart 2013; 99: 485490. DOI: 10.1136/heartjnl-2012-302831.CrossRefGoogle Scholar
John, AS, Jackson, JL, Moons, P, et al. Advances in managing transition to adulthood for adolescents with congenital heart disease: a practical approach to transition program design: a scientific statement from the American Heart Association. J Am Heart Assoc 2022; 11: e025278. DOI: 10.1161/JAHA.122.025278.CrossRefGoogle ScholarPubMed
Moons, P, Bratt, EL, De Backer, J, et al. Transition to adulthood and transfer to adult care of adolescents with congenital heart disease: a global consensus statement of the ESC Association of Cardiovascular Nursing and Allied Professions (ACNAP), the ESC Working Group on Adult Congenital Heart Disease (WG ACHD), the Association for European Paediatric and Congenital Cardiology (AEPC), the Pan-African Society of Cardiology (PASCAR), the Asia-Pacific Pediatric Cardiac Society (APPCS), the Inter-American Society of Cardiology (IASC), the Cardiac Society of Australia and New Zealand (CSANZ), the International Society for Adult Congenital Heart Disease (ISACHD), the World Heart Federation (WHF), the European Congenital Heart Disease Organisation (ECHDO), and the Global Alliance for Rheumatic and Congenital Hearts (Global ARCH). Eur Heart J 2021; 42: 42134223. DOI: 10.1093/eurheartj/ehab388.CrossRefGoogle Scholar
Carrizosa, J, An, I, Appleton, R, Camfield, P, Von Moers, A. Models for transition clinics. Epilepsia 2014; 55: 4651. DOI: 10.1111/epi.12716.CrossRefGoogle ScholarPubMed
Campbell, F, Biggs, K, Aldiss, SK, et al. Transition of care for adolescents from paediatric services to adult health services. Cochrane Datab Syst Rev 2016; 4: CD009794. DOI: 10.1002/14651858.CD009794.pub2.Google ScholarPubMed
Wakimizu, R, Sasaki, K, Yoshimoto, M, Miyazaki, A, Saito, Y. Multidisciplinary approach for adult patients with childhood-onset chronic disease focusing on promoting pediatric to adult healthcare transition interventions: an updated systematic review. Front Pediatr 2022; 10: 919865. DOI: 10.3389/fped.2022.919865.CrossRefGoogle ScholarPubMed
Bidwell, S. Database selection and search strategy optimization: the COSI search protocol [abstract]. In: 16th Annual Meeting of the International Society of Technology Assessment in Health Care, The Hague, 2000,Google Scholar
Sterne, JA, Savović, J, Page, MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomized trials. BMJ 2019; 366: l4898. DOI: 10.1136/bmj.l4898.CrossRefGoogle Scholar
Kim, SY, Park, JE, Lee, YJ, et al. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J Clin Epidemiol 2013; 66: 408414. DOI: 10.1016/j.jclinepi.2012.09.016.CrossRefGoogle ScholarPubMed
Higgins, JP, Thomas, J, Chandler, J, et al. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (updated February 2022). Cochrane, 2022. Available at www.training.cochrane.org/handbook. Accessed April 20, 2023.Google Scholar
Shenhav, L, Heller, R, Benjamini, Y. Quantifying replicability in systematic reviews: the r-value, arXiv. 2015;1502.00088:1-21. Available at: https://arxiv.org/pdf/1502.00088.pdf. Accessed April 30, 2023.Google Scholar
Borenstein, M, Hedges, LV, Higgins, JP, Rothestein, HR. Introduction to Meta-analysis. John Wiley & Sons, Chichester, West Sussex, 2009.CrossRefGoogle Scholar
Cohen, J. Statistical Power Analysis for the Behavioral Science. 2nd edn. Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.Google Scholar
Duval, S, Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455463. DOI: 10.1111/j.0006-341x.2000.00455.x.CrossRefGoogle ScholarPubMed
Harrer, M, Cuijpers, P, Furukawa, TA, Ebert, DD. Doing Meta-analysis with R: A Hands-on Guide. Chapman & Hall/CRC Press, Boca Raton, FL and London, 2021.CrossRefGoogle Scholar
Mackie, AS, Islam, S, Magill-Evans, J, et al. Healthcare transition for youth with heart disease: a clinical trial. Heart 2014; 100: 11131118. DOI: 10.1136/heartjnl-2014-305748.CrossRefGoogle ScholarPubMed
Goossens, E, Fieuws, S, Van Deyk, K, et al. Effectiveness of structured education on knowledge and health behaviors in patients with congenital heart disease. J Pediatr 2015; 166: 13701376. DOI: 10.1016/j.jpeds.2015.02.041.CrossRefGoogle ScholarPubMed
Lee, S, Lee, J, Choi, JY. The effect of a resilience improvement program for adolescents with complex congenital heart disease. Eur J Cardiovasc Nurs 2017; 16: 290298. DOI: 10.1177/1474515116659836.CrossRefGoogle ScholarPubMed
Hergenroeder, AC, Moodie, DS, Penny, DJ, et al. Functional classification of heart failure before and after implementing a healthcare transition program for youth and young adults transferring from a pediatric to an adult congenital heart disease clinics. Congenit Heart Dis 2018; 13: 548553. DOI: 10.1111/chd.12604.CrossRefGoogle Scholar
Mackie, AS, Rempel, GR, Kovacs, AH, et al. Transition intervention for adolescents with congenital heart disease. J Am Coll Cardiol 2018; 71: 17681777. DOI: 10.1016/j.jacc.2018.02.043.CrossRefGoogle ScholarPubMed
Lee, MJ, Jung, D. Development and effects of a self-management efficacy promotion program for adult patients with congenital heart disease. Eur J Cardiovasc Nurs 2019; 18: 140148. DOI: 10.1177/1474515118800099.CrossRefGoogle ScholarPubMed
Gaydos, SS, Chowdhury, SM, Judd, RN, McHugh, KE. A transition clinic intervention to improve follow-up rates in adolescents and young adults with congenital heart disease. Cadiol Young 2020; 30: 633640. DOI: 10.1017/S1047951120000682.CrossRefGoogle Scholar
Bushee, C, Ginde, S, Earing, MG, Buelow, M, Reinhardt, E, Cohen, S. Changes in care patterns associated with a transition program in adolescents with congenital heart disease: a single center study. Prog Pediatr Cardiol 2021; 62: 101343. DOI: 10.1016/j.ppedcard.2021.101343.CrossRefGoogle Scholar
Hwang, JH. Effects of an Online Health Management Program for Adolescents with Complex Congenital Heart Disease During Their Transition to Adulthood. Seoul National University, Seoul, 2022. Unpublished dissertation.Google Scholar
Mackie, AS, Rankin, KN, Yaskina, M, et al. Transition preparation for young adolescents with congenital heart disease: a clinical trial. J Pediatr 2022; 241: 3641.e2. DOI: 10.1016/j.jpeds.2021.09.053.CrossRefGoogle ScholarPubMed
Bandura, A. Self-efficacy: toward a unifying theory of behavioral change. Psychol Rev 1977; 84: 191215.CrossRefGoogle Scholar
McHugh, ML. Interrater reliability: the kappa statistic. Biochem Med 2012; 22: 276282. DOI: 10.11613/BM.2012.031.CrossRefGoogle ScholarPubMed
Sable, C, Foster, E, Uzark, K, et al. Best practices in managing transition to adulthood for adolescents with congenital heart disease: the transition process and medical and psychosocial issue: a scientific statement from the American Heart Association. Circulation 2011; 123: 14541485. DOI: 10.1161/CIR.0b013e3182107c56.CrossRefGoogle ScholarPubMed
Field, MJ, Jette, AM, Institute of Medicine (US) Committee on Disability in America (editors). The Future of Disability in America. National Academies Press, Washington, D.C, 2007.Google Scholar
Mackie, AS, Fournier, A, Swan, L, Marelli, AJ, Kovacs, AH. Transition and transfer from pediatric to adult congenital heart disease care in Canada: call for strategic implementation. Can J Cardiol 2019; 35: 16401651. DOI: 10.1016/j.cjca.2019.08.014.CrossRefGoogle ScholarPubMed
Ladouceur, M, Iserin, L, Cohen, S, Legendre, A, Boudjemline, Y, Bonnet, D. Key issues of daily life in adults with congenital heart disease. Arch Cardiovasc Dis 2013; 106: 404412. DOI: 10.1016/j.acvd.2013.02.004.CrossRefGoogle ScholarPubMed
Kovacs, AH, Brouillette, J, Ibeziako, P, et al. American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the, Young, etal, Psychological outcomes and interventions for individuals with congenital heart disease: a scientific statement from the American Heart Association. Circulation 2022; 15: e000110. DOI: 10.1161/HCQ.0000000000000110.Google Scholar
Cocomello, L, Dimagli, A, Biglino, G, Cornish, R, Caputo, M, Lawlor, DA. Educational attainment in patients with congenital heart disease: a comprehensive systematic review and meta-analysis. BMC Cardiovasc Disord 2021; 21: 549. DOI: 10.1186/s12872-021-02349-z.CrossRefGoogle ScholarPubMed
Westhoff-bleck, M, Briest, J, Fraccarollo, D, et al. Mental disorders in adults with congenital heart disease: unmet needs and impact on quality of life. J Affect Disord 2016; 204: 180186. DOI: 10.1016/j.jad.2016.06.047.CrossRefGoogle ScholarPubMed
Luychx, K, Goossens, E, Rassart, J, Apers, K, Vanhalst, J, Moons, P. Parental support, internalizing symptoms, perceived health status, and quality of life in adolescents with congenital heart disease: influences and reciprocal effects. J Behav Med 2014; 37: 145155. DOI: 10.1007/s10865-012-9474-5.CrossRefGoogle Scholar
Heery, E, Sheehan, AM, While, AE, Coyne, I. Experiences and outcomes of transition from pediatric to adult health care services for young people with congenital heart disease: a systematic review. Congenit Heart Dis 2015; 10: 413427. DOI: 10.1111/chd.12251.CrossRefGoogle ScholarPubMed
Flocco, SF, Lillo, A, Dellafiore, F, Goossens, E. Congenital Heart Disease: The Nursing Care Handbook. Springer International Publishing, Switzerland, 2019.CrossRefGoogle Scholar
Eun, YM. [Expert column] Adult congenital heart disease patients have nowhere to go. The Dong-A Ilbo, 2023. Available from https://www.donga.com/news/article/all/20230201/117698338/1. Accessed May 15, 2023.Google Scholar
Moons, P, De Volder, E, Budts, W, et al. What do adult patients with congenital heart disease know about their disease, treatment, and prevention of complications? A call for structured patient education. Heart 2001; 86: 7480. DOI: 10.1136/heart.86.1.74.Google Scholar
Sawicki, GS, Lukens-Bull, K, Yin, X, et al. Measuring the transition readiness of youth with special healthcare needs: validation of the TRAQ—Transition Readiness Assessment Questionnaire. J Pediatr Psychol 2011; 36: 160171. DOI: 10.1093/jpepsy/jsp128.CrossRefGoogle ScholarPubMed
De Lima Campos, EF, Perin, L, Assmann, M, Lucchese, F, Pellanda, LC. Knowledge about the disease and the practice of physical activity in children and adolescents with congenital heart disease. Arq Bras Cardiol 2020; 114: 786792. DOI: 10.36660/abc.20180417.Google Scholar
Kwon, SJ, Im, YM. Sexual health knowledge and needs among young adults with congenital heart disease. PLoS One 2021; 16: e0251155. DOI: 10.1371/journal.pone.0251155.CrossRefGoogle ScholarPubMed
Van Deyk, K, Pelgrims, E, Troost, E, et al. Adolescents’ understanding of their congenital heart disease on transfer to adult-focused care. Am J Cardiol 2010; 106: 18031807. DOI: 10.1016/j.amjcard.2010.08.020.CrossRefGoogle ScholarPubMed
Ebbinghaus, H. Memory: A Contribution to Experimental Psychology (Reprint of 1913 Edition). Martino Fine Books, Manchester, CT, 2011.Google Scholar
Riegel, B, Lee, CS, Dickson, VV, Carlson, B. An update on the self-care of heart failure index. J Cardiovasc Nurs 2009; 24: 485497. DOI: 10.1097/JCN.0b013e3181b4baa0.CrossRefGoogle ScholarPubMed
Van Achterberg, T, Huisman-de Waal, GG, Ketelaar, NA, Oostendorp, RA, Jacobs, JE, Wollershein, HC. How to promote healthy behaviours in patients? An overview of evidence for behaviour change techniques. Health Promot Int 2011; 26: 148162. DOI: 10.1093/heapro/daq050.CrossRefGoogle ScholarPubMed
García-Rodríguez, F, Raygoza-Cortez, K, Moreno-Hernandez, L, et al. Outcomes of transitional care programs on adolescent chronic inflammatory systemic diseases: systematic review and meta-analyses. Pediatr Rheumatol Online J 2022; 20: 15. DOI: 10.1186/s12969-022-00670-1.CrossRefGoogle ScholarPubMed
Bassareo, PP, Chessa, M, Di Salvo, G, Walsh, KP, Mcmahon, CJ. Strategies to aid successful transition of adolescents with congenital heart disease: a systematic review. Children 2023; 10: 423. DOI: 10.3390/children10030423.CrossRefGoogle ScholarPubMed
Bertoletti, J, Marx, GC, Hattge, SP, Pellanda, L. Health-related quality of life in adolescents with congenital heart disease. Cardiol Young 2015; 25: 526532. DOI: 10.1017/S1047951114000304.CrossRefGoogle ScholarPubMed
Khajali, Z, Sayyadi, A, Ansari, Z, Aliramezany, M. Quality of life in adult patients with congenital heart disease: results of a double-center study. Front Psychiatry 2023; 13: 1062386. DOI: 10.3389/fpsyt.2022.1062386.CrossRefGoogle ScholarPubMed
Liu, HC, Chaou, CH, Lo, CW, Chung, HT, Hwang, MS. Factors affecting psychological and health-related quality-of-life status in children and adolescents with congenital heart diseases. Children 2022; 9: 578. DOI: 10.3390/children9040578.CrossRefGoogle ScholarPubMed
Xu, C, Su, X, Ma, S, et al. Effects of exercise training in postoperative patients with congenital heart disease: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 2020; 9: e013516. DOI: 10.1161/JAHA.119.013516.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lee et al. supplementary material

Lee et al. supplementary material
Download Lee et al. supplementary material(File)
File 74.4 KB