Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T15:27:56.364Z Has data issue: false hasContentIssue false

Efficacy and safety of coronary computed tomography angiography in diagnosing coronary lesions in children

Published online by Cambridge University Press:  25 October 2023

Sharon W. Gould*
Affiliation:
Radiology Department, Nemours Children’s Health Delaware Valley, Wilmington, DE, USA
M. Patricia Harty
Affiliation:
Radiology Department, Nemours Children’s Health Delaware Valley, Wilmington, DE, USA
Mark Cartoski
Affiliation:
Nemours Cardiac Center, Nemours Children’s Health Delaware Valley, Wilmington, DE, USA
Vijay Krishnan
Affiliation:
Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
Nicole Givler
Affiliation:
Radiology Department, Nemours Children’s Health Delaware Valley, Wilmington, DE, USA
John Ostrowski
Affiliation:
Nemours Cardiac Center, Nemours Children’s Health Delaware Valley, Wilmington, DE, USA
Takeshi Tsuda
Affiliation:
Nemours Cardiac Center, Nemours Children’s Health Delaware Valley, Wilmington, DE, USA
*
Corresponding author: S. W. Gould; Email: sharon.gould@nemours.org

Abstract

Introduction:

Identification of paediatric coronary artery abnormalities is challenging. We studied whether coronary artery CT angiography can be performed safely and reliably in children.

Materials:

Retrospective analysis of consecutive coronary CT angiography scans was performed for image quality and estimated radiation dose. Both factors were assessed for correlation with electrocardiographic-gating technique that was protocoled on a case-by-case basis, radiation exposure parameters, image noise artefact parameters, heart rate, and heart rate variability.

Results:

Sixty scans were evaluated, of which 96.5% were diagnostic for main left and right coronaries and 91.3% were considered diagnostic for complete coronary arteries. Subjective image quality correlated significantly with lower heart rate, increasing patient age, and higher signal-to-noise ratio. Estimated radiation dose only correlated significantly with choice of electrocardiographic-gating technique with median doses as follows: 2.42 mSv for electrocardiographic-gating triggered high-pitch spiral technique, 5.37 mSv for prospectively triggered axial sequential technique, 3.92 mSv for retrospectively gated technique, and 5.64 mSv for studies which required multiple runs. Two scans were excluded for injection failure and one for protocol outside the study scope. Five non-diagnostic cases were attributed to breathing motion, scanning prior to peak contrast enhancement, or scan acquisition during the incorrect portion of the R-R interval.

Conclusions:

Diagnostic-quality coronary CT angiography can be performed reliably with a low estimated radiation exposure by tailoring each scan protocol to the patient’s body habitus and heart rate. We propose coronary CT angiography is a safe and effective diagnostic modality for coronary artery abnormalities in children.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tsuda, T. Preclinical coronary artery anomalies and silent myocardial ischemia in children: how can we identify the potentially life-threatening conditions? J Pediatr Cardiol Cardiac Surg 2017; 1: 4960.Google Scholar
Tsujii, N, Tsuda, E, Kanazaki, S, Kurosaki, K. Measurements of coronary artery aneurysms due to Kawasaki disease by dual-source computed tomography (DSCT). Pediatr Cardiol 2016; 37: 442447.10.1007/s00246-015-1297-zCrossRefGoogle ScholarPubMed
Sailing, LJ, Raptis, DA, Parekh, K, Rockefeller, TA, Sheybani, EF, Bhalla, S. Abnormalities of the coronary arteries in children: looking beyond the origins. Radiographics 2017; 37: 16651678.10.1148/rg.2017170018CrossRefGoogle Scholar
Han, BK, Rigsby, CK, Hlavacek, A, et al. Computed tomography imaging in patients with congenital heart disease part 1: rationale and utility. An expert consensus document of the society of cardiovascular computed tomography (SCCT) endorsed by the society of pediatric radiology (SPR) and the North American society of cardiac imaging (NASCI). J Cardiovasc Comput Tomogr 2015; 9: 475492.10.1016/j.jcct.2015.07.004CrossRefGoogle Scholar
van Stijn, D, Planken, RN, Groenink, M, Streekstra, GJ, Kuijpers, TW, Kuipers, IM. Coronary artery assessment in Kawasaki disease with dual-source CT angiography to uncover vascular pathology. Eur Radiol 2020; 30: 432441.10.1007/s00330-019-06367-6CrossRefGoogle ScholarPubMed
Odawara, Y, Kawamura, N, Yamasaki, Y, Hashimoto, J, Ishikawa, S, Honda, H. Evaluation of coronary artery variations using dual-source coronary computed tomography angiography in neonates with transposition of the great arteries. Jpn J Radiol 2019; 37: 308314.10.1007/s11604-018-00807-xCrossRefGoogle ScholarPubMed
Abbara, S, Blanke, P, Maroules, CD, et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the scoiety of cardiovascular computed tomography guidelines committee endorsed by the North American society for cardiovascular imaging (NASCI). J Cardiovasc Comput Tomogr 2016; 10: 435449.10.1016/j.jcct.2016.10.002CrossRefGoogle Scholar
Han, BK, Rigsby, CK, Leipsic, J, et al. Computed tomogrpahy imaging in patients with congenital heart disease, part 2: technical recommendations. An expert consensus document of the society of cardiovascular computed tomography (SCCT) endorsed by the society of pedaitric radiology (SPR) and the North American society of cardiac imaging (NASCI). J Cardiovasc Comput Tomogr 2015; 9: 493513.CrossRefGoogle Scholar
Han, BK, Lindberg, J, Overman, D, Schwartz, RS, Grant, K, Lesser, JR. Safety and accuracy of dual-source coronary computed tomography angiography in the pediatric population. J Cardiovasc Comput Tomogr 2012; 6: 252259.10.1016/j.jcct.2012.01.004CrossRefGoogle ScholarPubMed
Malone, LJ, Morin, CE, Browne, LP. Coronary computed tomography angiography in children. Pediatr Radiol 2022; 52: 24982509.10.1007/s00247-021-05209-2CrossRefGoogle ScholarPubMed
Pache, G, Grohmann, J, Bulla, S, et al. Prospective electrocardiography-triggered CT angiography of the great thoracic vessels in infants and toddlers with congenital heart disease: feasibility and image quality. Eur J Radiol 2011; 80: e440e445.10.1016/j.ejrad.2011.01.032CrossRefGoogle ScholarPubMed
Huang, MP, Liang, CH, Zhao, ZJ, et al. Evaluation of image quality and radiation dose at prospective ECG-triggered axial 256-slice multi-detector CT in infants with congential heart disease. Pediatr Radiol 2011; 41: 858866.CrossRefGoogle Scholar
Booij, R, Dijkshoorn, ML, van Straten, M, et al. Cardiovascular imaging in pediatric patients using dual source CT. J Cardiovasc Comput Tomogr 2016; 10: 1321.10.1016/j.jcct.2015.10.003CrossRefGoogle ScholarPubMed
Goetti, R, Feuchtner, G, Stolzmann, P, et al. High-pitch dual-source CT coronary angiography: systolic data acquisition at high heart rates. Eur Radiol 2010; 20: 25652571.10.1007/s00330-010-1838-zCrossRefGoogle ScholarPubMed
Zhang, W, Bogale, S, Golriz, F, Krishnamurthy, R. Relationship between heart rate and quiescent interval of the cardiac cycle in children using MRI. Pediatr Radiol 2017; 47: 15881593.10.1007/s00247-017-3918-6CrossRefGoogle ScholarPubMed
Le Roy, J, Azais, B, Zarqane, H, et al. Selection of optimal cardiac phases for ECG-triggered coronary CT angiography in pediatrics. Phys Med 2021; 81: 155161.10.1016/j.ejmp.2020.12.002CrossRefGoogle ScholarPubMed
Barrera, CA, Otero, HJ, White, AM, Saul, D, Biko, DM. Depiction of the native coronary arteries during ECG-triggered high-pitch dual-source coronary computed tomography in children: determinants of image quality. Clin Imaging 2018; 52: 240245.10.1016/j.clinimag.2018.08.013CrossRefGoogle ScholarPubMed
Hill, KD, Frush, DP, Han, BK, et al. Radiation safety in children with congenital and acquired heart disease: a scientific position statement on multimodality dose optimization from the image gently alliance. JACC Cardiovasc Imaging 2017; 10: 797818.10.1016/j.jcmg.2017.04.003CrossRefGoogle ScholarPubMed
Thomas, KE, Wang, B. Age-specfic effective doses for pediatric MSCT examinations at a lrage children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 2008; 38: 645656.CrossRefGoogle Scholar
McCollough, C, Edyvean, S, Gould, B, et al. The Measurement, Reporting, and Management of Radiation Dose in CT. AAPM Report 96. American Association of Physicists in Medicine, College Park, MD, 2008.10.37206/97CrossRefGoogle Scholar
Barrera, CA, White, AM, Shepherd, AM, et al. Contrast extravasation using power injectors for contrast-enhanced computed tomography in children: frequency and injury severity. Acad Radiol 2019; 26: 16681674.10.1016/j.acra.2019.04.008CrossRefGoogle ScholarPubMed
Arnold, R, Ley, S, Ley-Zaporozhan, J, et al. Visualization of coronary arteries in patients after childhood Kawasaki syndrome: value of multidetector CT and MR imaging in comparison to conventional coronary catheterization. Pediatr Radiol 2007; 37: 9981006.10.1007/s00247-007-0566-2CrossRefGoogle Scholar
Albrecht, MH, Varga-Szemes, A, Schoepf, UJ, et al. Diagnostic accuracy of noncontrast self-navigated free-breathing MR angiography versus CT angiography: a prospective syudy in pediatric patients with suspected anomalous coronary arteries. Acad Radiol 2019; 26: 13091317.CrossRefGoogle Scholar
Meinel, FG, Henzler, T, Schoepf, UJ, et al. UJ, etal, ECG-synchronized CT angiography in 324 consecutive pediatric patients: spectrum of indications and trends in radiation dose. Pediatr Cardiol 2015; 36: 569578.10.1007/s00246-014-1051-yCrossRefGoogle Scholar
Krishnamurthy, R, Masand, PM, Jadhav, SP, et al. Accuracy of computed tomography angiography and structured reporting of high-risk morphology in anomalous aortic origin of coronary artery: comparison with surgery. Pediatr. Radiol 2021; 51: 12991310.Google Scholar
Ben Saad, M, Rohnean, A, Sigal-Cinqualbre, A, Adler, G, Paul, JF. Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 2009; 39: 668676.10.1007/s00247-009-1209-6CrossRefGoogle ScholarPubMed
Li, T, Zhao, S, Lui, J, et al. Feasibility of high-pitch spiral dual-source CT angiography in children with complex congential heart disease compared to retrospective-gated spiral acquisition. Clin Radiol 2017; 72: 864870.10.1016/j.crad.2017.05.005CrossRefGoogle Scholar
Nie, P, Wang, X, Cheng, Z, Ji, X, Duan, Y, Chen, J. Accuracy, image quality and radiation dose comparison of high-pitch spiral and sequential acquisition on 128-slice dual-source CT angiography in children with congential heart disease. Eur Radiol 2012; 22: 20572066.10.1007/s00330-012-2479-1CrossRefGoogle Scholar
Zheng, M, Zhao, H, Xu, J, Wu, Y, Li, J. Image quality of ultra-low-dose dual-source CT angiography using high-pitch spiral acquisition and iterative reconstruction in young children with congenital heart disease. J Cardiovasc Comput Tomogr 2013; 7: 376382.10.1016/j.jcct.2013.11.005CrossRefGoogle ScholarPubMed
Goo, HW. Quatitative evaluation of coronary artery visibility on CT angiography in Kawasaki disease: young vs. old children. Int J Cardiovasc Imaging 2021; 37: 10851092.10.1007/s10554-020-02054-6CrossRefGoogle Scholar
Le Roy, J, Kovacsik, H, Zarqane, H, et al. Submilisievert multiphasic coronary computed tomography angiography for pediatric patients with congenital heart diseases. Circ Cardiovasc Imaging 2019; 12: e008348.10.1161/CIRCIMAGING.118.008348CrossRefGoogle Scholar
Yamasaki, Y, Kawanami, S, Kamitani, T, et al. Patient-related factors influencing detectability of coronary arteries in 320-row CT angiography in infants with complex congential heart disease. Int J Cardiovasc Imaging 2018; 34: 14851491.CrossRefGoogle Scholar
Bridoux, A, Hutt, A, Faivre, JB, et al. Coronary artery visibility in free-breathing young children on non-gated chest CT: impact of temporal resolution. Pediatr Radiol 2015; 45: 17611770.10.1007/s00247-015-3401-1CrossRefGoogle ScholarPubMed
Wang, Y, Vidan, E, Bergman, GW. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 1999; 213: 751758.10.1148/radiology.213.3.r99dc41751CrossRefGoogle ScholarPubMed
Barrera, CA, Otero, HJ, White, AM, Saul, D, Biko, DM. Image quality of ECG-triggered high-pitch, dual-source computed tomography angiography for cardiovascular assessment in children. Curr Probl Diagn Radiol 2020; 49: 2328.10.1067/j.cpradiol.2018.10.006CrossRefGoogle ScholarPubMed
Watanabe, H, Kamiyama, H, Kato, M, Komori, A, Abe, Y, Ayusawa, M. Appropriate use of a beta-blocker in paediatric coronary CT angiography. Cardiol Young 2018; 28: 11481153.10.1017/S104795111800118XCrossRefGoogle ScholarPubMed
Cademartiri, F, Mollet, NR, Lemos, PA, et al. Higher intracoronary attenuation improves diagnostic accuracy in MDCT coronary angiography. AJR Am J Roentgenol 2006; 187: W430W433.10.2214/AJR.05.1406CrossRefGoogle ScholarPubMed
Liu, Y, Li, J, Zhao, H, et al. Image quality and radiation dose of dual-source CT cardiac angiograhpy usnig prospective ECG-triggering technique in pediatric patients with congenital heart disease. J Cardiothorac Surg 2016; 11: 47.CrossRefGoogle Scholar
Layritz, C, Schmid, J, Achenbach, S, et al. Accuracy of prospectively ECG-triggered very low-dose coronary dual-source CT angiography using iterative reconstruction for the detection of coronary artery stenosis: comparison with invasive catheterization. Eur Heart J Cardiovasc Imaging 2014; 15: 12381245.CrossRefGoogle ScholarPubMed
Supplementary material: File

Gould et al. supplementary material 1

Gould et al. supplementary material
Download Gould et al. supplementary material 1(File)
File 16.6 KB
Supplementary material: File

Gould et al. supplementary material 2

Gould et al. supplementary material
Download Gould et al. supplementary material 2(File)
File 18.7 KB