Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T19:48:48.770Z Has data issue: false hasContentIssue false

Leukotriene B4 levels in CHD-associated paediatric pulmonary hypertension

Published online by Cambridge University Press:  06 March 2024

Gamze Vuran*
Affiliation:
Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
Murat Muhtar Yılmazer
Affiliation:
Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
Engin Gerçeker
Affiliation:
Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
Cüneyt Zihni
Affiliation:
Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
Timur Meşe
Affiliation:
Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
*
Corresponding author: G. Vuran; Email: gamzetalay@hotmail.com

Abstract

Background:

The aim of this study is to evaluate the role of leukotriene B4, an inflammatory mediator, in the development of pulmonary hypertension in paediatric patients with CHD with left-right shunt.

Methods:

The study included forty patients with CHD with left-right shunts. Based on haemodynamic data obtained from cardiac diagnostic catheterisation, 25 patients who met the criteria for pulmonary arterial hypertension were included in the patient group. The control group comprised 15 patients who did not meet the criteria. The standard cardiac haemodynamic study was conducted. Leukotriene B4 levels were assessed in blood samples taken from both pulmonary arteries and peripheral veins.

Results:

The median age of patients with pulmonary arterial hypertension was 10 months (range: 3–168), while the median age of the control group was 50 months (range: 3–194). In the pulmonary hypertension group, the median pulmonary artery systolic/diastolic/mean pressures were 38/18/24 mmHg, compared to 26/10/18 mmHg in the control group. Leukotriene B4 levels in pulmonary artery blood samples were significantly higher in the pulmonary arterial hypertension group compared to the controls (p < 0.05). Peripheral leukotriene B4 levels were also elevated in the pulmonary arterial hypertension group in comparison to the control group, though the difference was not statistically significant.

Conclusion:

The discovery of elevated leukotriene B4 levels in pulmonary artery samples from paediatric patients with pulmonary arterial hypertension secondary to CHD with left-to-right shunt suggests that local inflammation may have a pathological role in the development of pulmonary arterial hypertension.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lai, YC, Potoka, KC, Champion, HC, Mora, AL, Gladwin, MT. Pulmonary arterial hypertension: the clinical syndrome. Circ Res 2014; 115: 1151305.CrossRefGoogle ScholarPubMed
Humbert, M, Lau, EM, Montani, D, Jais, X, Sitbon, O, Simonneau, G. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation 2014; 130: 21892208.CrossRefGoogle ScholarPubMed
Burke, DL, Frid, MG, Kunrath, CL, et al. Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. Am J Physiol Lung Cell Mol Physiol 2009; 297: L238250.CrossRefGoogle ScholarPubMed
Rabinovitch, M, Guignabert, C, Humbert, M, Nicolls, MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 2014; 115: 165175.CrossRefGoogle ScholarPubMed
Guignabert, C, Tu, L, Girerd, B, et al. New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: importance of endothelial communication. Chest 2015; 147: 529537.CrossRefGoogle ScholarPubMed
Morrell, NW, Aldred, MA, Chung, WK, et al. Genetics and genomics of pulmonary arterial hypertension. Eur Respir J 2019; 53: 1801899.CrossRefGoogle ScholarPubMed
Dorfmuller, P, Perros, F, Balabanian, K, Humbert, M. Inflammation in pulmonary arterial hypertension. Eur Respir J 2003; 22: 358363.CrossRefGoogle ScholarPubMed
Nicolls, MR, Taraseviciene-Stewart, L, Rai, PR, Badesch, DB, Voelkel, NF. Autoimmunity and pulmonary hypertension: a perspective. Eur Respir J 2005; 26: 11101118.CrossRefGoogle ScholarPubMed
Angelini, DJ, Su, Q, Yamaji-Kegan, K, et al. Resistin-like molecule-beta in scleroderma-associated pulmonary hypertension. Am J Respir Cell Mol Biol 2009; 41: 553561.CrossRefGoogle ScholarPubMed
Perros, F, Dorfmuller, P, Montani, D, et al. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 185: 311321.CrossRefGoogle ScholarPubMed
Nicolls, MR, Taraseviciene-Stewart, L, Rai, PR, Badesch, DB, Voelkel, NF. Autoimmunity and pulmonary hypertension: a perspective. Eur Respir J 2005; 26: 11101118.CrossRefGoogle ScholarPubMed
Taraseviciene-Stewart, L, Nicolls, MR, Kraskauskas, D, et al. Absence of T cells confers increased pulmonary arterial hypertension and vascular remodeling. Am J Respir Crit Care Med 2007; 175: 12801289.CrossRefGoogle ScholarPubMed
Peters-Golden, M, Brock, TG. 5-lipoxygenase and flap. Prostaglandins Leukot Essent Fatty Acids 2003; 69: 99109.CrossRefGoogle ScholarPubMed
Peters-Golden, M, Henderson, WR Jr. Leukotrienes. N Engl J Med 2007; 357: 18411854.CrossRefGoogle ScholarPubMed
Tian, W, Jiang, X, Sung, YK, Qian, J, Yuan, K. Nicolls MR.Leukotrienes in pulmonary arterial hypertension. Immunol Res 2014; 58: 387393.CrossRefGoogle ScholarPubMed
Israel, E, Rubin, P, Kemp, JP, et al. The effect of inhibition of 5-lipoxygenase by zileuton in mild-to-moderate asthma. Ann Int Med 1993; 119: 10591066.CrossRefGoogle ScholarPubMed
Tabata, T, Ono, S, Song, C, et al. Role of leukotriene B4 in monocrotaline-induced pulmonary hypertension. Nihon Kyobu Shikkan Gakkai Zasshi 1997; 35: 160166.Google ScholarPubMed
Tian, W, Jiang, X, Tamosiuniene, R, et al. Blocking macrophage leukotriene B4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med 2013; 5: 200ra117.CrossRefGoogle ScholarPubMed
Voelkel, NF, Tuder, RM, Wade, K, et al. Inhibition of 5-lipoxygenase-activating protein (FLAP) reduces pulmonary vascular reactivity and pulmonary hypertension in hypoxic rats. J Clin Invest 1996; 97: 24912498.CrossRefGoogle ScholarPubMed
Wright, L, Tuder, RM, Wang, J, Cool, CD, Lepley, RA, Voelkel, NF. 5-lipoxygenase and 5-lipoxygenase activating protein (FLAP) immuno. reactivity in lungs from patients with primary pulmonary hypertension. Am J Respir Crit Care Med 1998; 157: 219229.CrossRefGoogle Scholar
Davidson, D, Drafta, D, Wilkens, BA. Elevated urinary leukotriene E4 in chronic lung disease of extreme prematurity. Am J Respir Crit Care Med 1995; 151: 841845.CrossRefGoogle ScholarPubMed
Groneck, P, Gotze-Speer, B, Oppermann, M, Eiffert, H, Speer, CP. Association of pulmonary inflammation and increased microvascular per. meability during the development of bronchopulmonary dysplasia: a sequential analysis of inflammatory mediators in respiratory fluids of high-risk preterm neonates. Pediatrics 1994; 93: 712718.CrossRefGoogle Scholar
Yoo, HHB, Marin, FL. Treating inflammation associated with pulmonary hypertension: an overview of the literature. Int J Gen Med 2022; 15: 10751083.CrossRefGoogle ScholarPubMed
Voelkel, NF, Gomez-Arroyo, J, Abbate, A, Bogaard, HJ, Nicolls, MR. Pathobiology of pulmonary arterial hypertension and right ventricular failure. Eur Respir J 2012; 40: 15551565.CrossRefGoogle ScholarPubMed
Huertas, A, Tu, L, Humbert, M, Guignabert, C. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovasc Res 2020; 116: 885893.CrossRefGoogle ScholarPubMed
Humbert, M, Monti, G, Brenot, F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 1995; 151: 16281631.CrossRefGoogle ScholarPubMed
Chami, HE, Hassoun, PM. Inflammatory mechanisms in the pathogenesis of pulmonary arterial hypertension. Compr Physiol 2011; 1: 19291941.CrossRefGoogle ScholarPubMed
Qian, J, Tian, W, Jiang, X, et al. Leukotriene B4Activates pulmonary artery adventitial fibroblasts in pulmonary hypertension. Hypertension 2015; 115: 06370.Google Scholar
Marleau, S, Dallaire, N, Poubelle, PE, Borgeat, P. Metabolic disposition of leukotriene B4 (LTB4) and oxidation-resistant analogues of LTB4 in conscious rabbits. Br J Pharmacol 1994; 112: 654658.CrossRefGoogle ScholarPubMed
Lotfi, R, Davoodi, A, Mortazavi, SH, et al. Imbalanced serum levels of resolvin E1 (RvE1) and leukotriene B4 (LTB4) may contribute to the pathogenesis of atherosclerosis. Mol Biol Rep 2020; 47: 77457754.CrossRefGoogle Scholar
Wu, SH, Yin, PL, Zhang, YM, Tao, HX. Reversed changes of lipoxin A4and leukotrienes in children with asthma in different severity degree. Pediatr Pulm 2010; 45: 333340.CrossRefGoogle Scholar
Liao, PY, Wu, SH. Serum levels of IL-5 and LTB4 in children with Henoch-Schonlein purpura. Zhongguo Dang Dai Er Ke Za Zhi 2006; 8: 198200.Google ScholarPubMed
Gonzaga, LRA, Gomes, WJ, Rocco, IS, et al. Inflammatory markers in Eisenmenger syndrome and their association with clinical outcomes. A cross-sectional comparative study. Int J Cordiol 2021; 342: 3438.CrossRefGoogle ScholarPubMed
Karakurt, C, Başpınar, O, Çelik, SÇ., Taşkapan, Ç., Şahin, DA, Yoloğlu, S. Serum pentraxin-3 and hs-CRP levels in children with severe pulmonary hypertension. Balkan Med J 2014; 31: 219223.CrossRefGoogle ScholarPubMed
Supplementary material: File

Vuran et al. supplementary material

Vuran et al. supplementary material
Download Vuran et al. supplementary material(File)
File 19 KB